Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x2 - 7x = 0
=> x(x - 7) = 0
=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
2) -3x2 + 5x = 0
=> x(-3x + 5) = 0
=> \(\orbr{\begin{cases}x=0\\-3x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)
3) x2 - 19x - 20 = 0
=> x2 - 20x + x - 20 = 0
=> x(x - 20) + (x - 20) = 0
=> (x + 1)(x - 20) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-20=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=20\end{cases}}\)
4) x2 - 5x - 24 = 0
=> x2 - 8x + 3x - 24 = 0
=> x(x - 8) + 3(x - 8) = 0
=> (x + 3)(x - 8) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
1) x2 - 7x = 0
<=> x( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
2) -3x2 + 5x = 0
<=> x( -3x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\)
3) x2 - 19x - 20 = 0
<=> x2 + x - 20x - 20 = 0
<=> x( x + 1 ) - 20( x + 1 ) = 0
<=> ( x - 20 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x=20\\x=-1\end{cases}}\)
4) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x( x + 3 ) - 8( x + 3 ) = 0
<=> ( x - 8 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}x=8\\x=-3\end{cases}}\)
\(x^2-6x+5=0\)
<=> \(x^2-x-5x+5=0\)
<=> \(x\left(x-1\right)-5\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x-5\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x=1 và x=5
\(2x^2+7x-9=0\) ( nếu là 9 thì ko ra kq đc nên mình đổi thành -9 nha )
<=> \(2x^2-2x+9x-9=0\)
<=> \(2x\left(x-1\right)+9\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x+9\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\2x+9=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{-9}{2}\end{matrix}\right.\)
\(4x^2-7x+3=0\)
<=> \(4x^2-4x-3x+3=0\)
<=>\(4x\left(x-1\right)-3\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(4x-3\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
\(2\left(x+5\right)=x^2+5x\)
<=> \(2\left(x+5\right)-x^2-5x=0\)
<=>\(2\left(x+5\right)-x\left(x+5\right)=0\)
<=>\(\left(x+5\right)\left(2-x\right)=0\)
<=>\(\left\{{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
ý bạn là như thế này đúng không ạ:
a/ \(x^2-6x+5=0\)
\(x^2-5x-x+5=0\)
\(x\left(x-5\right)-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}x-5=0\rightarrow x=5\\x-1=0\rightarrow x=1\end{cases}}\)
b/\(2x^2+7x+9=0\)
?!
c/ \(4x^2-7x+3=0\)
\(4x^2-4x-3x+3=0\)
\(4x\left(x-1\right)-3\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x-3\right)=0\)
\(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\4x-3=0\Rightarrow x=\frac{3}{4}\end{cases}}\)
d/ \(2\left(x+5\right)=2x+10\)
-,- mik ko rõ đề ạ, sai thì ibox ạ.Cảm ơn
a. x(x-5)-4x+20=0
\(\Leftrightarrow\)x(x-5)-4(x-5)=0
\(\Leftrightarrow\)(x-4)(x-5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}}\)
b, x(x+6)-7x-42=0
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\\ \Leftrightarrow\left(x-7\right)\left(x+6\right)=0\\ \Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}}\)
3, x^3-5x^2+x-5=0
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\\ \Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)
1,x^2-(x+1)(x-1)=0
x^2-x^2+1+0
1=0(vô lý)
2,5x^3+3x^2+3x+1=4x^2
x^3+3x^2+3x+1=0
(x+1)=0
x=-1
3,x^3+x^2=0
x^2(x+1)=0
x=0 or x=-1
4,2x^3-12x^2+18x=0
x^3-6x^2+9x=0
x(x^2-6x+9)=0
x(x-3)^2=0
x=0 or x=3
5,5x^2-4(x^2-2x+1)+20=0
5x^2-4x^2+8x-4+20=0
x^2+8x+16=0
(x+4)^2=0
x=-4
6,5x(x-3)+7x-21=0
5x(x-3)+7(x-3)=0
(5x+7)(x-3)=0
5x-7=0 or x-3=0
x=7/5 or x=3
7,2x^3-50x=0
2x(x^2-25)=0
2x(x-5)(x+5)=0
x=0 or x=5 or x=-5
8,(4x-1)^2-9(x+3)^2=0
(4x-1)^2-3^2*(x+3)^2=0
(4x-1)^2-(3x+9)^2=0
(4x-1-3x-9)(4x-1+3x+9)=0
(x-10)(7x+8)=0
x=10 or x=-8/7
9,3(x-2)^2-x+2=0
3*(x-2)*(x-2)-(x-2)=0
(3x-6)(x-2)-(x-2)=0
(x-2)(3x-6-1)=0
(x-2)(3x-7)=0
x=2 or x=7/3
10,9x^2+6x-8=0
9x^2+12x-6x-8=0
3x(3x-2)+4(3x-2)=0
(3x+4)(3x-2)=0
3x+4=0 or 3x-2=0
x=-4/3 or x=2/3
Bài 3: (SBT/24):
a. \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)
(5x+3) . (x2-4) = 5x3-20x+3x3-12
(x-2) . (5x2+13x+6) = 5x3+13x2+6x-10x2-26x-12 = 5x3-20x+3x2-12
=> (5x+3) (x2-4) = (x-2) (5x2+13x+6)
Vậy \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)(đẳng thức đúng)
b. \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^2+6x+9}\)
(x+1) . (x2+6x+9) = x3+6x2+9x+x2+6x+9 = x3+7x2+15x+9
(x+3) . (x2+3) = x3+3x+3x2+9
=> (x+1) (x2+6x+9) ≠ (x+3) (x2+3)
Vậy \(\dfrac{x+1}{x+3}\)≠\(\dfrac{x^2+3}{x^2+6x+9}\)(đẳng thức sai)
Chữa lại: \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^{2_{ }}+6x+9}\)
c. \(\dfrac{x^2-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)
(x2-2) . (x+1) = x3+x2-2x-2
(x2-1) . (x+2) = x3+2x2-x-2
=> (x2-2) (x+1) ≠ (x2-1) (x+2)
Vậy \(\dfrac{x^2-2}{x^2-1}\)≠\(\dfrac{x+2}{x+1}\)(đẳng thức sai)
Chữa lại: \(\dfrac{x^2+x-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)
d. \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)
(2x2-5x+3) . (x2+5x+4) = 2x4+10x3+8x2-5x3-25x2-20x+3x2+15x+12
= 2x4+5x3-14x2-5x+12
(x2+3x-4) . (2x2-x-3) = 2x4-x3-3x2+6x3-3x2-9x-8x2+4x+12
= 2x4+5x3-14x2-5x+12
=> (2x2-5x+3) (x2+5x+4) = (x2+3x-4) (2x2-x-3)
Vậy \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)
Đúng nhưng chỉ có điều nghiệm cực xấu thôi:v
sai đề nha bạn