Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
a) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 4
<=> x3 - 9x2 + 27x - 27 - ( x3 - 27 ) + 9( x2 + 2x + 1 ) = 4
<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 = 4
<=> 45x + 9 = 4
<=> 45x = -5
<=> x = -5/45 = -1/9
b) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 17
<=> x( x2 - 25 ) - ( x3 + 8 ) = 17
<=> x3 - 25x - x3 - 8 = 17
<=> -25x - 8 = 17
<=> -25x = 25
<=> x = -1
a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )
<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84
<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192
<=> -80x = -588
<=> x = -588/-80 = 147/20
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6
<=> x2 + 5x + 6 - x2 - 3x + 10 = 6
<=> 2x + 16 = 6
<=> 2x = -10
<=> x = -5
c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x
<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x
<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2
<=> -5x2 - 2x = -3
<=> -5x2 - 2x + 3 = 0
<=> -( 5x2 + 2x - 3 ) = 0
<=> -( 5x2 + 5x - 3x - 3 ) = 0
<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0
<=> -( x + 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)
d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3
<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3
<=> 4x2 - 6x = 11
<=> 4x2 - 6x - 11 = 0
=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))
vẫn làm được nha quỳnh !
\(4x^2-6x-11=0\)
\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)
\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)
\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
\(x^2-4x-1=0\)
\(\left(x^2-2\cdot x\cdot2+4\right)-5=0\)
\(\left(x-2\right)^2=\left(\sqrt{5}\right)^2\)
\(\Rightarrow x-2=\pm\sqrt{5}\)
Tự giải tiếp nha ...
Bài 1 :
(3xy-1/2).(4x2y-6xy2+1) = 12x3y2 - 18x2y3 + 3xy - 2x2y + 3xy2 - 1/2
Bài 4:
\(4x^2+8x+7=\left(4x^2+8x+4\right)+3=\left(2x+2\right)^2+3\ge3>0 \)
b: \(\Leftrightarrow\dfrac{x-2}{A}=\dfrac{\left(5x-1\right)\left(x-2\right)}{x^2\left(5x-1\right)+3\left(5x-1\right)}=\dfrac{x-2}{x^2+3}\)
hay \(A=x^2+3\)
a) (x + 3)2 - (x - 2)2 = 2x
=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x
=> 5(2x + 1) = 2x
=> 10x + 5 = 2x
=> 10x - 2x = -5
=> 8x = -5
=> x = -5/8
b) 7x(x - 2) = x - 2
=> 7x(x - 2) - (x - 2) = 0
=> (7x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)
c) 8x3 - 12x2 + 6x - 1 = 0
=> (2x - 1)3 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
5(3-2x)+5(x+4)6-4x
= 15-10x++30x+120-4x
= (15+120)+(-10x+30x-4x)
= 135+16x
5(3-2x)+5(x+4)6-4x
= 15-10x++30x+120-4x
= (15+120)+(-10x+30x-4x)
= 135+16x