
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


c) \(5^{x+2}+5^x=650\)
\(\Leftrightarrow 5^x(5^2+1)=650\)
\(\Leftrightarrow 5^x.26=650\)
\(\Rightarrow 5^x=25=5^2\Rightarrow x=2\)
d) \(81^x=(-3)^7\)
Ta thấy \(81^x>0, \forall x\in\mathbb{R}\)
\((-3)^7<0\)
Do đó pt đã cho vô nghiệm.
Lời giải:
a) \((2x-1)^3=(2x-1)^4\)
\(\Leftrightarrow (2x-1)^4-(2x-1)^3=0\)
\(\Leftrightarrow (2x-1)^3[(2x-1)-1]=0\)
\(\Leftrightarrow (2x-1)^3(2x-2)=0\)
\(\Rightarrow \left[\begin{matrix} 2x-1=0\\ 2x-2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=1\end{matrix}\right.\)
b) \(2017^{x+2}=(2018-5^3)^{x+2}\)
\(\Rightarrow \left[\begin{matrix} x+2=0(1)\\ 2017=2018-5^3(2)\end{matrix}\right.\)
(1)\(\Rightarrow x=-2\)
(2): hiển nhiên vô lý
Vậy pt có nghiệm $x=-2$


1)\(79-5\left(11-x\right)=34\)
\(\Rightarrow79-55+5x=34\)
\(\Rightarrow24+5x=34\)
\(\Rightarrow5x=-10\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
2)\(32+2\left(7-x\right)=40\)
\(\Rightarrow32+14-2x=40\)
\(\Rightarrow46-2x=40\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
3)\(\left(166-2x\right).8^9=2.8^{11}\)
\(\Rightarrow\left(83-x\right).2.8^9=2.8^{11}\)
\(\Rightarrow83-x=8^3\)
\(\Rightarrow83-x=512\)
\(\Rightarrow x=-429\)
Vậy \(x=-429\)
4)\(5^2.x-2^3.x=51\)
\(\Rightarrow x\left(5^2-2^3\right)=51\)
\(\Rightarrow x\left(25-8\right)=51\)
\(\Rightarrow17x=51\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
5)\(3^x+4.3^x=5.3^7\)
\(\Rightarrow3^x\left(1+4\right)=5.3^7\)
\(\Rightarrow5.3^x=5.3^7\)
\(\Rightarrow3^x=3^7\)
\(\Rightarrow x=7\)
Vậy \(x=7\)
6)\(7.2^x-2^x=6.32\)
\(\Rightarrow2^x\left(7-1\right)=6.2^5\)
\(\Rightarrow6.2^x=6.2^5\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
7)\(15^{3-x}=225\)
\(\Rightarrow15^{3-x}=15^2\)
\(\Rightarrow3-x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
8)\(4.5^x-3=97\)
\(\Rightarrow4.5^x=100\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
9)\(171-3.2^x=123\)
\(\Rightarrow3.2^x=48\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
10)\(180-4.x^5=32\)
\(\Rightarrow4.x^5=148\)
\(\Rightarrow x^5=37\)//Đề có lỗi không ???

Tìm x :
a) (2x + 1 )^4 = 16
<=> ( 2x + 1 )^4 = 4^2 hoặc (-4)^2
<=> 2x + 1 = 4 hoặc 2x + 1 = -4
<=> 2x = 3 hoặc 2x = -5
<=> x = 3/2 hoặc x = -5/2
Vậy x € { 3/2 ; -5/2 }
b) x^20 = x
<=> x^20 - x = 0
<=> x^19 . x^1 - x . 1 = 0
<=> x^19 . x - x . 1 = 0
<=> x . ( x^19 - 1 ) = 0
<=> x = 0 hoặc x^19 - 1 = 0
<=> x = 0 hoặc x^19 = 1
<=> x = 0 hoặc x^19 = 1^19
<=> x = 0 hoặc x = 1
Vậy x € { 0 ; 1 }
c) 5^x . 5^x+2 = 650
<=> 5^x . 1 + 5^x . 5^2 = 650
<=> 5^x . 1 + 5^x . 25 = 650
<=> 5^x . ( 1 + 25 ) = 650
<=> 5^x . 26 = 650
<=> 5^x = 25
<=> 5^x = 5^2
=> x = 2
d)32 < 2^x < 128
<=> 2^5 < 2^x < 2^7
=> 5 < x < 7
<=> 5 < 6 < 7
=> x = 6
e) 4< 2^x < 32
<=> 2^2 < 2^x < 2^5
=> 2 < x < 5
<=> 2 < 3 ; 4 < 5
=> x € { 3 ; 4 }

a, \(\left(2x+7\right)^4=10^{11}:10^7\)
\(\Rightarrow\left(2x+7\right)^4=10^4\)
\(\Rightarrow2x+7=10\)
\(\Rightarrow2x=10-7\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\) hay \(x=1,5\)
b, \(5^{x-1}.7^{x-1}=25.49\)
\(\Rightarrow\)\(5^{x-1}.7^{x-1}=5^2.7^2\)
\(\Rightarrow\left\{{}\begin{matrix}5^{x-1}=5^2\\7^{x-1}=7^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=2\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)
c, \(\left(x-5\right)^{2018}=9.\left(x-5\right)^{2016}\)
\(\Rightarrow\dfrac{\left(x-5\right)^{2018}}{\left(x-5\right)^{2016}}=9.\dfrac{\left(x-5\right)^{2016}}{\left(x-5\right)^{2016}}\)
\(\Rightarrow\left(x-5\right)^2=9\)
\(\Leftrightarrow\left(x-5\right)^2=3^2\)
\(\Rightarrow x-5=3\)
\(\Rightarrow x=3+5\)
\(\Rightarrow x=8\)
a) (5-x)5=32
=>(5-x)5=25
=>5-x=2
=> x = 3
b) x5=x7
=> x7-x5=0
=> x5(x2-1)=0
\(\Rightarrow\left[{}\begin{matrix}x^5=0\\x^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
c) (2x+1):7=22+32
=> (2x+1):7=4+9
=> (2x+1):7=13
=> 2x+1=91
=> 2x=90
=> x = 45
d) 5x+52=650
=> 52.(5x-2+1)=650
=> 5x-2+1=26
=> 5x-2=25
=> 5x-2=52
=> x-2=2
=>x=4