![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
vi (x-5)^2=(5-x)^2
nen 4x^2(x-5)-(5-x)^2=(x-5).(4x^2-x+5)=0
nen x-5=0 hoac 4x^2-x+5=0
neu x-5=0thix=5
neu 4x^2-x+5=0 thi x(4x-1)=-5
cau tu lam not nhye ]
k cho to nha
T bt làm r nhưng đag vướng cái đoạn x(4x-1) =-5 í làm kiểu j -.-
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(x^2-25-\left(x+5\right)=0\)
\(\Rightarrow x^2-5^2-\left(x+5\right)=0\)
\(\Rightarrow\left(x-5\right)\times\left(x+5\right)-\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-5-1\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-6\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-5=\left(-5\right)\\x=0+6=6\end{cases}}\)
b, \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(\left(2x\right)^2-1^2\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(2x-1\right)\times\left(2x+1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-\left(2x+1\right)\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(-2\right)=0\)\(\Rightarrow\left(-4x\right)+2=0\)
\(\Rightarrow\left(-4x\right)=0-2=-2\)
\(\Rightarrow x=\frac{-2}{-4}=\frac{1}{2}\)
c, \(x^2\times\left(x^2+4\right)-x^2-4=0\)
\(\Rightarrow x^2\times\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Rightarrow\left(x^2-1\right)\times\left(x^2+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=1\\x^2=\left(-4\right)\end{cases}}\)
\(\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
4x - x^2 - 5 = -( x^2 - 4x + 5) = - (x^2 - 4x + 4 + 1) = - (x-2)^2 -1 (tui mở ngoặc, dùng hằng đẳng thức A^2 - 2AB + B^2 )
mà (x-2 ) ^2 >= 0 (lớn hơn hoặc bằng)
=> - (x-2 ) ^2 <= 0 (bé hơn hoặc bằng ) (liên hệ thứ tự và phép nhân )
=> -(x-2 ) ^2 -1 <= -1 (cộng hai vế cho -1 )
=> - (x-2 )^2 -1 < 0 (với mọi x )
Cậu ơi sai đề rồi nó phải là <0
A= 4x -x2-5 <0
<=> - ( x2-2x2+22)-1 <0
<=> -(x-2)2-1 <0 ( vi (x-2)2>= 0)
=> ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x + 3)2 - (x - 2)2 = 2x
=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x
=> 5(2x + 1) = 2x
=> 10x + 5 = 2x
=> 10x - 2x = -5
=> 8x = -5
=> x = -5/8
b) 7x(x - 2) = x - 2
=> 7x(x - 2) - (x - 2) = 0
=> (7x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)
c) 8x3 - 12x2 + 6x - 1 = 0
=> (2x - 1)3 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}