![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-1\right)3+3x\left(x-1\right)=0\)
<=> \(3\left(x-1\right)\left(x+1\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4x^2-4x+1=25\)
\(4x^2-4x\) \(=25-1\)
\(4x^2-4x\) \(=24\)
Toi day thi hk p lam nua, nhung cuoi cung suy ra x =3
![](https://rs.olm.vn/images/avt/0.png?1311)
B = 2\(x^2\) - 4\(x\) - 8
B = 2(\(x^2\) - 2\(x\) + 4) - 16
B = 2(\(x-2\))2 - 16
Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)
⇒ 2(\(x-2\))2 - 16 ≥ -16 ∀ \(x\)
Dấu bằng xảy ra khi (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)
Vậy Bmin = -16 khi \(x=2\)
Tìm min của C biết:
C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17
C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1
C = (\(x\) - y)2 + 2(\(x\) - y) + 1 + (y2 - 8y + 16)
C = (\(x-y+1\))2 + (y - 4)2
Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y
Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow25\left(x+1\right)^4-26\left(x+1\right)^2+1=0\Leftrightarrow25\left(x+1\right)^4-25\left(x+1\right)^2-\left(\left(x+1\right)^2-1\right)=0\)
\(\Leftrightarrow25\left(x+1\right)^2.\left(\left(x+1\right)^2-1\right)-\left(\left(x+1\right)^2-1\right)=0\)
\(\Leftrightarrow\left(\left(x+1\right)^2-1\right).\left(25\left(x+1\right)^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2-1=0\\25\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,-2\\x=-\frac{4}{5},-\frac{6}{5}\end{cases}}}\)
\(x^2+x-1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}=0\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{\sqrt{5}}{2}\\x+\frac{1}{2}=\frac{-\sqrt{5}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-1}{2}\\x=\frac{-\sqrt{5}-1}{2}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
4x2.(x-1)+25.(x-1) = (x-1).(4x2+25)
Hoctot
\(4x^2\left(x-1\right)+25\left(x-1\right)=\left(x-1\right)\left(4x^2+25\right)\)