Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+3x-27=2x^2-6x+9x-27=2x\left(x-3\right)+9\left(x-3\right)=\left(2x+9\right)\left(x-3\right)\)
\(x^3-7x+6=x^3-x-6x+6=x\left(x^2-1\right)-6\left(x-1\right)=x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=\left(x-1\right)\left(x^2+x-6\right)\)
\(x^3+5x^2+8x+4=x^3+x^2+4x^2+8x+4=x^2\left(x+1\right)+4\left(x^2+2x+1\right)=x^2\left(x+1\right)+4\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
e, \(x^3+5x^2+8x+4=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
d, \(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
b)3x^2-18x+27=3x^2-9x-9x+27=3x*(x-3)-9*(x-3)=(x-3)*(3x-9)=(x-3)*3*(x-3)=3*(x-3)^2
c)x^3-4x^2-12x+27=(x+3)*(x^2-3x+9-4)=(x+3)*(x^2-3x+5)
d)27x^3-1/27=(3x-1/3)*(9x^2-x+1/9) (hang dt)
con a) voi e) mk chiu
\(a,A=\left(2x-5\right)^2-\left(2x+5\right)^2+40x-1\)
\(=\left(2x-5-2x-5\right)\left(2x-5+2x+5\right)+40x-1\)
\(=-10.4x^2+40x-1\)
\(=-40x^2+40x-1=-1\)
\(b,B=\left(3x-2y\right)^2+\left(3x+2y\right)^2-18x-8y^2+1\)
\(=9x^2-12xy+4y^2+9x^2+12xy+4y^2-18x-8y^2+1\)
\(=18x^2-18x+1\)
\(c,C=\left(2+x\right)^2-\left(2-x\right)^2-8x+3\)
\(=\left(2+x-2+x\right)\left(2+x+2-x\right)-8x+3\)
\(=2x.4-8x+3=3\)
a)\(\Leftrightarrow\left(9x^2-30x+25\right)-\left(9x^2+6x+1\right)\)
\(\Leftrightarrow9x^2-30x+25-9x^2-6x-1=8\)
\(\Leftrightarrow9x^2-30x-9x^2-6x=8-25+1\)
\(\Leftrightarrow-36x=-16\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy \(x=\frac{4}{9}\)
b)\(\Leftrightarrow16x^2-6x-\left(16x^2-24x+9\right)=27\)
\(\Leftrightarrow16x^2-6x-16x^2+24x-9=27\)
\(\Leftrightarrow16x^2-6x-16x^2+24x=27+9\)
\(\Leftrightarrow18x=36\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Chúc bạn học tốt.
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
a) 4x2 – 6x3y – 2x2 + 8x = 2x ( 2x - 3 x\(^2\)y - x + 4 )
b) x2 – 4 – 2xy + y2 = ( x2– 2xy + y2) \(-4\) = ( x - y )\(^2\) - 2\(^2\)
= ( x - y - 2 ) ( x - y + 2 )
c) x3 – 4x2 – 12x +27
= (x\(^3\) + 27 ) - ( 4x\(^2\) + 12x )
= ( x + 3 ) ( x\(^2\) - 3x + 9 ) - 4x ( x + 3)
= ( x + 3 ) ( x\(^2\) - 3x + 9 - 4x )
= ( x + 3 ) ( x\(^2\) - 7x + 9 )
d) 3x2 – 18x + 27 = 3 ( x\(^2\) - 6x + 9 )
\(2x^2-8x=-8\)
\(2x^2-8x+8=0\)
\(2\left(x^2-4x+4\right)=0\)
\(2\left(x-2\right)^2=0\)
\(\Rightarrow x-2=0\)
\(x=2\)
\(-3x^2+18x-27=0\)
\(-3\left(x^2-6x+9\right)=0\)
\(-3\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(x=3\)
\(2x^2-8x=-8\)
\(\Leftrightarrow2\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow2\left(x^2+2x2+2^2\right)=0\)
\(\Leftrightarrow2\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)