Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B = | 2x - 3 | - 7
| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7
Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2
=> MinB = -7 <=> x = 3/2
C = | x - 1 | + | x - 3 |
= | x - 1 | + | -( x - 3 ) |
= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 1 )( 3 - x ) ≥ 0
=> 1 ≤ x ≤ 3
=> MinC = 2 <=> 1 ≤ x ≤ 3
b) M = 5 - | x - 1 |
- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxM = 5 <=> x = 1
N = 7 - | 2x - 1 |
- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxN = 7 <=> x = 1/2
ĐKXĐ : \(x+2\ge0\Rightarrow x\ge-2\)
=> |x| = x + 2
<=> \(\orbr{\begin{cases}x=x+2\\x=-x-2\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\left(\text{loại}\right)\\2x=-2\end{cases}\Rightarrow x=-1\left(tm\right)}\)
b) ĐKXĐ \(x\ge0\)
=> |x - 1| = x
<=> \(\orbr{\begin{cases}x-1=x\\-x+1=x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=1\left(\text{loại}\right)\\2x=1\end{cases}\Rightarrow x=0,5\left(tm\right)}\)
c) ĐKXĐ \(2x-3\ge0\Rightarrow x\ge1,5\)
Khi đó : \(x-1\ge0;x+1\ge0\)
Ta có |x - 1| + |x + 1| = 2x - 3
<=> x - 1 + x + 1 = 2x - 3
=> 2x = 2x - 3
=> 0x = -3 (loại)
Vậy \(x\in\varnothing\)
Tìm x
\(2^{x+2}+2^{x+1}-2^x=40\)
\(\left(3-2x\right)\left(2,4+3x\right)\left(\frac{3}{2}-2x\right)=0\)
\(2^{x+2}+2^{x+1}-2^x=40\)
\(\Rightarrow2^x\left(2^2+2-1\right)=40\)
\(\Rightarrow2^x=8\)
\(\Rightarrow x=3\)
2x+2 + 2x+1 - 2x = 40
2x.22+2x.2-2x=40
2x.(4+2-1)=40
2x.5=40
2x=8
2x=23
x=3
vậy x=3
a) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
=> \(\frac{3}{2}x-\frac{2}{5}-\frac{1}{3}x+\frac{1}{4}=0\)
=> \(\left(\frac{3}{2}-\frac{1}{3}\right)x+\left(-\frac{2}{5}+\frac{1}{4}\right)=0\)
=> \(\frac{7}{6}x-\frac{3}{20}=0\)
=> \(\frac{7}{6}x=\frac{3}{20}\)
=> \(x=\frac{3}{20}:\frac{7}{6}=\frac{3}{20}\cdot\frac{6}{7}=\frac{9}{70}\)
b) \(2x-\frac{2}{3}=7x+\frac{2}{3}-1\)
=> \(2x-\frac{2}{3}=7x-\frac{1}{3}\)
=> \(2x-\frac{2}{3}-7x+\frac{1}{3}=0\)
=> (2x - 7x) + (-2/3 + 1/3) = 0
=> -5x - 1/3 = 0
=> -5x = 1/3
=> x = -1/15
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
\(|2x-1|+|x-\frac{1}{2}|=3\left(1\right)\)
+) Với \(x< \frac{1}{2}\Rightarrow\hept{\begin{cases}2x-1< 0\\x-\frac{1}{2}< 0\end{cases}\Rightarrow\hept{\begin{cases}|2x-1|=1-2x\\|x-\frac{1}{2}|=\frac{1}{2}-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được:
\(1-2x+\frac{1}{2}-x=3\)
\(\Leftrightarrow\frac{3}{2}-3x=3\)
\(\Leftrightarrow3x=\frac{-3}{2}\)
\(\Leftrightarrow x=\frac{-1}{2}\)( chọn )
+) Với \(x\ge\frac{1}{2}\Rightarrow\hept{\begin{cases}2x-1\ge0\\x-\frac{1}{2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}|2x-1|=2x-1\\|x-\frac{1}{2}|=x-\frac{1}{2}\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được:
\(2x-1+x-\frac{1}{2}=3\)
\(\Leftrightarrow3x-\frac{3}{2}=3\)
\(\Leftrightarrow3x=\frac{9}{2}\)
\(\Leftrightarrow x=\frac{3}{2}\)( chọn )
Vậy \(x\in\left\{\frac{-1}{2};\frac{3}{2}\right\}\)