![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x-4\right)^4=81\)
\(\left(2x-4\right)^4=3^4\)
\(\Rightarrow2x-4=3\)
\(\Rightarrow2x=7\)
\(\Rightarrow x=\frac{7}{2}\)
vay \(x=\frac{7}{2}\)
\(\left(x-1\right)^5=-32\)
\(\left(x-1\right)^5=\left(-2\right)^5\)
\(\Rightarrow x-1=-2\)
\(\Rightarrow x=-1\)
vay \(x=-1\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\left(2x-1\right)^6\left(1-2x+1\right)\left(1+2x-1\right)=0\)
\(\left(2x-1\right)^6\left(-2x+2\right)\left(2x\right)=0\)
\(\Rightarrow\left(2x-1\right)^6=0\)hoac \(\Rightarrow\orbr{\begin{cases}-2x+2=0\\2x=0\end{cases}}\)
\(\Rightarrow2x-1=0\) hoac \(\Rightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
\(\Rightarrow x=\frac{1}{2}\)hoac \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{x-1}{8}=\frac{5}{4}\)
\(\frac{x-1}{8}=\frac{10}{8}\)
\(\Leftrightarrow x-1=10\)
\(x=10+1\)
\(x=11\)
vậy x =11
b)\(\frac{6}{2x-1}=\frac{12}{-8}\)
\(\frac{6}{2x-1}=\frac{6}{-4}\)
\(\Leftrightarrow2x-1=-4\)
\(2x=-4+1\)
\(2x=-3\)
\(x=\frac{-3}{2}\)
vậy \(x=\frac{-3}{2}\)
c) \(\frac{2x-5}{-12}=\frac{-6}{9}\)
\(\frac{2x-5}{-12}=\frac{-2}{3}\)
\(\frac{2x-5}{-12}=\frac{8}{-12}\)
\(\Leftrightarrow2x-5=8\)
\(2x=8+5\)
\(2x=13\)
\(x=\frac{13}{2}\)
vậy \(x=\frac{13}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(\frac{2x+3}{15}=\frac{7}{5}\)
\(\Leftrightarrow5\left(2x+3\right)=15.7\)
\(\Leftrightarrow10x+15=105\)
\(\Leftrightarrow10x=90\)
\(\Leftrightarrow x=9\)
b. \(\frac{x-2}{9}=\frac{8}{3}\)
\(\Leftrightarrow3\left(x-2\right)=9.8\)
\(\Leftrightarrow3x-6=72\)
\(\Leftrightarrow3x=78\)
\(\Leftrightarrow x=26\)
c. \(\frac{-8}{x}=\frac{-x}{18}\)
\(\Leftrightarrow-x^2=-144\)
\(\Leftrightarrow x^2=12^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
Mấy câu kia tương tự
d, \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=6x-12\Leftrightarrow4x=-27\Leftrightarrow x=-\frac{27}{4}\)
e, \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x=132\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f, \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x=10\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x+2\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)
g, \(\left(2x-1\right)\left(2x+1\right)=63\Leftrightarrow4x^2+2x-2x-1=63\Leftrightarrow4x^2-64=0\)
\(\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
h, \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow\left(10x+5\right)\left(x+1\right)=30\Leftrightarrow10x^2+10x+5x+5=30\)
\(\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(2x+5\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(\left(\frac{-1}{3}\right)^3.x=\frac{1}{81}\)
\(\Leftrightarrow\frac{1}{81}:\left(-\frac{1}{27}\right)\)
\(\Leftrightarrow x=\frac{-1}{3}\)
b. x8 = 16 . x6
<=> x8 : x6 = 16
<=> x2 = 42
<=> x = 4
c. (2x - 1)6 = (2x - 1)8
<=> x = \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy x = 1 hoặc 0
![](https://rs.olm.vn/images/avt/0.png?1311)
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: \(\Leftrightarrow3x+4=2\)
=>3x=-2
=>x=-2/3
2: \(\Leftrightarrow7x-7=6x-30\)
=>x=-23
3: =>\(5x-5=3x+9\)
=>2x=14
=>x=7
4: =>9x+15=14x+7
=>-5x=-8
=>x=8/5
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(2x-1\right)^3=-27\)
\(\left(2x-1\right)^3=-3^3\)
\(2x-1=-3\)
\(2x=-3+1\)
\(2x=-2\)
\(x=-2:2\)
\(x=-1\)
b) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
*\(\Rightarrow2x-1=1\)
\(2x=1+1\)
\(2x=2\)
\(x=2:2\)
\(x=1\)
*\(\Rightarrow2x-1=-1\)
\(2x=-1+1\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
*\(\Rightarrow2x-1=0\)
\(2x=0+1\)
\(2x=1\)
\(x=1:2\)
\(x=\frac{1}{2}\)
Vậy \(x=\left\{1;0;\frac{1}{2}\right\}\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=1\\x=0\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{1}{2},0,1\right\}\)