Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 5: đặt x2 = t, khi đó:
\(-x^4+2x^2+1=0\) (5)
\(\Leftrightarrow-t^2+2t+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\\t=1-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1+\sqrt{2}\\x^2=1-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\\x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (5) là \(S=\left\{-\sqrt{1+\sqrt{2}};\sqrt{1+\sqrt{2}}\right\}\)
a) x3 + 3x2 + 3x + 1 = 64
=> (x + 1)3 = 64
=> (x + 1)3 = 43
=> x + 1 = 4 => x = 3
b) x3 + 6x2 + 9x = 4x
=> x3 + 6x2 + 9x - 4x = 0
=> x3 + 6x2 + 5x = 0
=> x3 + 5x2 + x2 + 5x = 0
=> x2(x + 5) + x(x + 5) = 0
=> (x + 5)(x2 + x) = 0
=> (x + 5)x(x + 1) = 0
=> \(\hept{\begin{cases}x=-5\\x=0\\x=-1\end{cases}}\)
c) 4(x - 2)2 = (x + 2)2
=> 4(x2 - 4x + 4) = x2 + 4x + 4
=> 4x2 - 16x + 16 = x2 + 4x + 4
=> 4x2 - 16x + 16 - x2 - 4x - 4 = 0
=> 3x2 - 20x + 12 = 0
=> 3x2 - 18x - 2x + 12 = 0
=> 3x(x - 6) - 2(x - 6) = 0
=> (x - 6)(3x - 2) = 0
=> \(\orbr{\begin{cases}x=6\\x=\frac{2}{3}\end{cases}}\)
d) x4 - 16x2 = 0
=> x2(x2 - 16) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
e) x4 - 4x3 + x2 - 4x = 0
=> x4 + x2 - 4x3 - 4x = 0
=> x2(x2 + 1) - 4x(x2 + 1) = 0
=> (x2 - 4x)(x2 + 1) = 0
=> x(x - 4)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì x2 + 1 \(\ge\)1 > 0 \(\forall\)x)
f) x3 + x = 0 => x(x2 + 1) = 0 => x = 0 (vì x2 + 1 \(\ge1>0\forall\)x)
Lần sau đăng thì chia thành nhiều câu hỏi nhé
\(16^2-9.\left(x+1\right)^2=0\)
\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)
\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)
\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)
\(\left[13-3x\right].\left[19+3x\right]=0\)
\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)
KL:..............................
f) \(4x^2-12x+9=0\)
<=> \(\left(2x-3\right)^2\) = 0
<=> \(2x-3=0\)
<=> \(2x=3\) <=> \(x=\dfrac{3}{2}\)
Vậy ...............
g) \(3x^2+7x+2=0\)
<=> \(\left(3x^2+6x\right)+\left(x+2\right)=0\)
<=> \(3x\left(x+2\right)+\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(3x+1\right)=0\)
<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy ........................
h) \(x^2-4x+1=0\)
<=> \(\left(x^2-4x+4\right)-3=0\)
<=> \(\left(x-2\right)^2=3\)
<=> \(\left[{}\begin{matrix}x+2=\sqrt{3}\\x+2=-\sqrt{3}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3}-2\\x=-\sqrt{3}-2\end{matrix}\right.\)
Vậy .........................
i) \(2x^2-6x+1=0\)
<=> \(2\left(x^2-3x+2,25\right)-3,5=0\)
<=> \(\left(x-1,5\right)^2=1,75\)
<=> \(\left[{}\begin{matrix}x-1,5=\sqrt{1,75}\\x-1,5=-\sqrt{1,75}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{1,75}+1,5\\x=-\sqrt{1,75}+1,5\end{matrix}\right.\)
Vậy ...................
j) \(3x^2+4x-4=0\)
<=> \(\left(3x^2+6x\right)-\left(2x+4\right)=0\)
<=> \(3x\left(x+2\right)-2\left(x+2\right)\) = 0
<=> \(\left(x+2\right)\left(3x-2\right)=0\)
<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ....................................
f) \(4x^2-12x+9=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy..
g) \(3x^2+7x+2=0\)
\(\Rightarrow3x^2+6x+x+2=0\)
\(\Rightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy..
h) \(x^2-4x+1=0\)
\(\Rightarrow x^2-4x+4-3=0\)
\(\Rightarrow\left(x-2\right)^2-3=0\)
\(\Rightarrow\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2-\sqrt{3}=0\\x-2+\sqrt{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
Vậy..
j) \(3x^2+4x-4=0\)
\(\Rightarrow3x^2+6x-2x-4=0\)
\(\Rightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..
câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!
vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)
\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)
Chúc bạn học tốt!!
d/
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
e/
\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)
\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
b) Ta có: \(x^3-7x+6=0\)
\(\Leftrightarrow x^3-6x-x+6=0\)
\(\Leftrightarrow x\left(x^2-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+3x-2x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x=2\end{matrix}\right.\)
Vậy: x∈{1;-3;2}
c) Ta có: \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)
\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=\pm\sqrt{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{3;1;\pm\sqrt{3}\right\}\)
d) Ta có: \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^3-4x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\cdot x\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\\x=\pm2\end{matrix}\right.\)
Vậy: x∈{-2;-1;0;1;2}
e) Ta có: \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Leftrightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x=1\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: x∈{-1;1;2}
1. \(x^4-4x^3+3x^2+4x-4=0\)
\(\Rightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Rightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Rightarrow\left(x^2-4x+4\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-2\right)^2\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=1\\x=-1\end{matrix}\right.\)
2. \(x^2-3x+2=0\)
\(\Rightarrow x^2-2x-x+2=0\)
\(\Rightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(2,x^2-3x+2=0\)
\(\Rightarrow x^2-2x-x+2=0\)
\(\Rightarrow\left(x^2-x\right)-\left(2x-x\right)=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)