\(1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2009}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2010}{2011}\)

=> \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2010}{2011}\)

=>\(1-\frac{1}{x+1}=\frac{2010}{2011}\)

=> \(\frac{1}{x+1}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)

=> x + 1 = 2011

=> x = 2010

6 tháng 8 2015

x-(20/11*13+20/13*15+20/15*17+...+20/553*55)=3/7

14 tháng 8 2015

(a-b)(a-b)+(b-c)(b-c)+(c-a)(c-a)=(a+b-2c)(a+b-2c)+(b+c-2a)(b+c-2a)+(c+a-2b)(c+a-2b)

Cm:a=b=c

Cái này lớp 6 : 

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{4026}=\frac{1}{2013}\)

\(\Leftrightarrow x+1=2013\)

=> x = 2012

1 tháng 6 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{x+1}=1-\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{x+1}=\frac{2}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2013-1\)

\(\Rightarrow x=2012\)

Vậy \(x=2012\)

~ Ủng hộ nhé 

12 tháng 8 2019

\(\left(1-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}\right)\cdot X=\frac{11}{6}\)

\(< =>\left(\frac{1}{2}-\frac{1}{12}-\frac{1}{60}\right)\cdot X=\frac{11}{6}\)

\(< =>\left(\frac{30}{60}-\frac{5}{60}-\frac{1}{60}\right)\cdot X=\frac{11}{6}\)

\(< =>\left(\frac{30-5-1}{60}\right)\cdot X=\frac{11}{6}\)

\(< =>\frac{2}{5}\cdot X=\frac{11}{6}\)

\(< =>X=\frac{11}{6}:\frac{2}{5}\)

\(< =>X=\frac{55}{12}\)

CHUC BAN HOC TOT >.<

16 tháng 8 2017

Ta có:

\(A=\left(x-\frac{1}{2}\right).\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{10}\right)=\frac{1}{3}\)

\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\frac{9}{10}=\frac{1}{3}\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}.\frac{10}{9}\Leftrightarrow x=\frac{47}{54}\)

\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}=\frac{1}{10.x}\)

\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)=\frac{1}{10}-\frac{1}{x}\)

\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\)

\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\Leftrightarrow B=\frac{1}{5}.\frac{100}{101}=\frac{1}{10}-\frac{1}{x}\)

\(\Leftrightarrow B=\frac{1}{x}=\frac{1}{10}-\frac{20}{101}=-\frac{99}{1010}\Leftrightarrow x=-\frac{1010}{99}\)

16 tháng 8 2017

c) Sai đề nhé bạn vì không có kết quả nên không tìm được x.

d) \(\left(x-5\right).\left(10-9\frac{40}{41}\right):\left(1-\frac{81}{82}\right):\left(1-\frac{204}{205}\right)=2050\)

\(\Rightarrow\left(x-5\right).\frac{1}{41}.82.205=2050\)

\(\Rightarrow\left(x-5\right).2.205=2050\Leftrightarrow x-5=2050:410=5\Leftrightarrow x=10\)

8 tháng 8 2015

a, (x+2)+(x+4)+(x+6)+...+(x+100)=6000

(x+x+x+...+x)+(2+4+6+...+100)=6000

50.x+2550=6000

50.x=6000-2550

50.x=3450

x=3450:50

x=69

b, 1+2+3+4+...+x=15

10+...+x=15

x=15-10

x=5

Nho **** cho minh nha

 

26 tháng 2 2016

Ta có: (x+x+x+...+x) + (2+4+6+...+100) = 6000

Ta thấy vế phải có: (100-2):2+1=50(số hạng)

Tổng của vế phải: [(2+100)*50]:2=2550

\(\Rightarrow\)có 50 số x

\(\Rightarrow\)50*x + 2550 = 6000

\(\Rightarrow\)50*x=6000-2550

\(\Rightarrow\)50*x=3450

\(\Rightarrow\)x=3450:50

\(\Rightarrow\)x=69

   Vậy x=69

Mình đúng nè, nhớ k nha

18 tháng 4 2015

Ta có \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
                                              \(\frac{15}{16}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
                                              \(\frac{15}{16}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
                                              \(\frac{15}{16}:x=1-\frac{1}{12}\)
                                              \(\frac{15}{16}:x=\frac{11}{12}\)
                                              \(x=\frac{15}{16}:\frac{11}{12}\)
                                              \(x=\frac{180}{176}\)
Đúng thì like nha

16 tháng 6 2017

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\cdot x=2009\)

\(\left(1-\frac{1}{2010}\right)\cdot x=2009\)

\(\frac{2009}{2010}\cdot x=2009\)

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)

16 tháng 6 2017

\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+....+\frac{1}{2009}-\frac{1}{2010}\right).x=2009\)

\(\left(\frac{1}{1}-\frac{1}{2010}\right).x=2009\)

\(\frac{2009}{2010}.x=2009\)

            

\(x=2009:\frac{2009}{2010}\)

\(x=2010\)