Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{3;-\dfrac{5}{2}\right\}\)
\(b,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{\dfrac{2}{3};\dfrac{13}{4}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-\dfrac{1}{2};3\right\}\)
\(d,\left(x-1\right)\left(2x-1\right)=x\left(1-x\right)\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1+x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{1;\dfrac{1}{3}\right\}\)
\(e,0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{1;3\right\}\)
\(f,\left(x+2\right)\left(3-4x\right)=x^2+4x=4\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-x^2-4x-4=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-2;\dfrac{1}{5}\right\}\)
\(g,\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(x-12\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\forall x\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\\x=-3\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-3\right\}\)
\(h,2x\left(x-1\right)=x^2-1\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy nghiệm của pt là \(S=\left\{1\right\}\)
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)
\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)
\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)
\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)
\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)
\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)
Ko viết lại đề
Câu 1: chia ra làm 3 trường hợp
Câu 2:
\(\left(x+2-x+2\right)\left(x+2\right)=0\)
\(4\left(x+2\right)=0\)
\(\Rightarrow x+2=0\)
\(x=-2\)
\(2x\left(x-3\right)-x+3=0\)
<=> \(2x\left(x-3\right)-\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(2x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
Vậy...
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
\(1,5x^2-4\left(x^2-2x+1\right)+20=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4+20=0\)
\(\Leftrightarrow x^2+8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\Rightarrow x=-4\)
\(2,x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow x\left(x-2\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)