Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x.\frac{-3}{7}=\frac{4}{21}\)
\(x=\frac{4}{21}:\frac{-3}{7}\)
\(x=\frac{-4}{9}\)
\(b,\frac{-4}{7}:x=\frac{2}{5}\)
\(x=\frac{-4}{7}:\frac{2}{5}\)
\(x=\frac{-10}{7}\)
\(c,x+\frac{1}{12}=\frac{-3}{8}\)
\(x=\frac{-3}{8}-\frac{1}{12}\)
\(x=\frac{-11}{24}\)
\(d,\frac{2}{15}-x=\frac{-3}{10}\)
\(x=\frac{2}{15}+\frac{3}{10}\)
\(x=\frac{13}{30}\)
\(e,-x+\frac{4}{5}=\frac{1}{2}\)
\(-x=\frac{-3}{10}\)
\(x=\frac{3}{10}\)
\(f,\frac{3}{4}.\left(x+1\right)-\frac{1}{2}=\frac{3}{7}\)
\(\frac{3}{4}.\left(x+1\right)=\frac{13}{14}\)
\(x+1=\frac{26}{21}\)
\(x=\frac{5}{21}\)
\(\frac{-3}{2}-2x+\frac{3}{4}=-2\)
\(\frac{-3}{2}-2x=\frac{-11}{4}\)
\(2x=\frac{-3}{2}+\frac{11}{4}\)
\(2x=\frac{-17}{4}\)
\(x=\frac{-17}{8}\)
\(h,-x+\frac{4}{5}=\frac{1}{2}\)
\(-x=\frac{-3}{10}\)
\(x=\frac{3}{10}\)
chúc bạn học tốt !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
4, Q = |x+\(\frac{1}{5}\) | -x +\(\frac{4}{7}\)
xét x \(\ge\) \(-\frac{1}{5}\)
Ta Có Q = |x+\(\frac{1}{5}\) | -x + \(\frac{4}{7}\) = x+\(\frac{1}{5}\) - x +\(\frac{4}{7}\) = \(\frac{27}{35}\) (1)
xét x \(< -\frac{1}{5}\)
Ta có Q = | x +\(\frac{1}{5}\) | - x + \(\frac{4}{7}\) = -x - \(\frac{1}{5}\) - x + \(\frac{4}{7}\) = -2x + \(\frac{13}{35}\)
với x \(< -\frac{1}{5}\)
=> -2x \(>\) \(\frac{2}{5}\)
=> -2x + \(\frac{13}{35}\) \(>\frac{27}{35}\) (2)
Từ (1) và (2) => MinQ = \(\frac{27}{35}\) khi \(x\ge-\frac{1}{5}\)
5 , D = |x| + |8-x|
D = |x| + |8-x| \(\ge\) |x+8-x| = |8| = 8
Dấu ''='' xảy ra khi x(8-x) \(\ge\) 0 <=> 0\(\le\)x\(\le\) 8
Vậy MinD = 8 khi \(0\le x\le8\)
6,L= |x - 2012| + |2011 - x|
L = |x-2012| + |2011-x| \(\ge\) | x-2012 + 2011 - x | = |-1| = 1
Dấu ''= '' xảy ra khi ( x-2012)(2011-x) \(\ge\) 0
làm nốt câu 6 nãy ấn nhầm
<=> 2011\(\le\) x \(\le\) 2012
Vậy MinL = 1 khi \(2011\le x\le2012\)
7 , E = | x- \(\frac{2006}{2007}\) | + |x-1|
Ta có :
E = |x-\(\frac{2006}{2007}\) | + |1-x|
E = | x - \(\frac{2006}{2007}\) | + |1-x| \(\ge\) | x - \(\frac{2006}{2007}\) + 1 - x | = \(\frac{1}{2007}\)
Dấu ''='' xảy ra khi (x- \(\frac{2006}{2007}\) ) ( 1-x ) \(\ge0\) <=> \(\frac{2006}{2007}\le x\le1\)
Vậy MinE = \(\frac{1}{2007}\) khi \(\frac{2006}{2007}\le x\le1\)
8 ,F = | x -\(\frac{1}{4}\) | + | \(x-\frac{3}{4}\) |
Ta có :
F = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) - x |
F = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) -x | \(\ge\) | x - \(\frac{1}{4}\) + \(\frac{3}{4}\) -x | = \(\frac{1}{2}\)
Dấu ''='' xảy ra khi ( x-\(\frac{1}{4}\) ) ( \(\frac{3}{4}-x\) ) \(\ge\) 0 <=> \(\frac{1}{4}\le x\le\frac{3}{4}\)
Vậy MinF = \(\frac{1}{2}\) khi \(\frac{1}{4}\le x\le\frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)
\(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)
\(x=-\) \(\dfrac{49}{56}\)
Vậy \(x=-\dfrac{49}{56}\)
b; 6 - \(x\) = - \(\dfrac{3}{4}\)
\(x\) = 6 + \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)
\(x=\dfrac{27}{4}\)
Vậy \(x=\dfrac{27}{4}\)
c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)
\(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)
\(x=\dfrac{19}{20}\)
Vậy \(x=\dfrac{19}{20}\)
Bài 1:
d; - 6 - \(x\) = - \(\dfrac{3}{5}\)
\(x\) = - 6 + \(\dfrac{3}{5}\)
\(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)
\(x=-\dfrac{27}{5}\)
Vậy \(x=-\dfrac{27}{5}\)
e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)
\(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)
\(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)
\(x=\dfrac{22}{21}\)
Vậy \(x=\dfrac{22}{21}\)
f; - 8 - \(x\) = - \(\dfrac{5}{3}\)
\(x\) = \(-\dfrac{5}{3}\) + 8
\(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)
\(x\) = \(\dfrac{-19}{3}\)
Vậy \(x=-\dfrac{19}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{\left(-11\right)}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{19}{70}\right|\)
=> \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\frac{19}{70}=\frac{3}{35}\)
=> \(\frac{2}{5}+x+\frac{3}{2}=\frac{3}{7}-\frac{3}{35}=\frac{12}{35}\)
=> \(\frac{2}{5}+x=\frac{12}{35}-\frac{3}{2}=-\frac{81}{70}\)
=> \(x=-\frac{81}{70}-\frac{2}{5}=-\frac{109}{70}\)
b) \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)
=> \(\frac{3}{4}x-6=\frac{5}{2}\)
=> \(\frac{3}{4}x=\frac{17}{2}\)
=> \(x=\frac{17}{2}:\frac{3}{4}=\frac{34}{3}\)
Câu c,d tự làm nhé
a. \(\frac{3}{7}-\left(\frac{2}{5}+x+\frac{3}{2}\right)=\frac{5}{14}-\left|\frac{4}{35}-\frac{-11}{70}\right|\)
\(\Rightarrow\frac{3}{7}-\left(\frac{19}{10}+x\right)=\frac{5}{14}-\left|\frac{4}{35}+\frac{11}{70}\right|\)
\(\Rightarrow\frac{3}{7}-\frac{19}{10}-x=\frac{5}{14}-\left|\frac{19}{70}\right|=\frac{5}{14}-\frac{19}{70}\)
\(\Rightarrow-\frac{103}{70}-x=\frac{3}{35}\)
\(\Rightarrow x=-\frac{103}{70}-\frac{3}{35}\)
\(\Rightarrow x=-\frac{109}{70}\)
b. \(\frac{3}{4}\left(x-8\right)=\frac{5}{7}\left(4-\frac{1}{2}\right)\)
\(\Rightarrow\frac{3}{4}\left(x-8\right)=\frac{5}{7}.\frac{7}{2}=\frac{5}{2}\)
\(\Rightarrow x-8=\frac{10}{3}\)
\(\Rightarrow x=\frac{34}{3}\)
c. \(\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow\frac{1}{2}=\frac{2}{3}-7x-4x=\frac{2}{3}-11x\)
\(\Rightarrow11x=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
d. \(4\left(\frac{1}{2}-x\right)-5\left(x-\frac{3}{10}\right)=\frac{7}{4}\)
\(\Rightarrow2-4x-5x+\frac{3}{2}=\frac{7}{4}\)
\(\Rightarrow2-9x=\frac{1}{4}\)
\(\Rightarrow9x=\frac{7}{4}\)
\(\Rightarrow x=\frac{7}{36}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=-4x+1\end{cases}}\Rightarrow\orbr{\begin{cases}4x-\frac{3}{2}x-1=\frac{1}{2}\\-4x-\frac{3}{2}x+1=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=\frac{3}{2}\\-\frac{11}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
phần b ở đề bài mình ghi sai, là bằng 0 chứ ko phải bằng 10
![](https://rs.olm.vn/images/avt/0.png?1311)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
1, \(5.\left|x+2\right|=10.\left(-2\right)\)
\(\Leftrightarrow5.\left|x+2\right|=-20\)
\(\Leftrightarrow\left|x+2\right|=-\frac{20}{5}=-4\)
Ta thấy : \(\left|x+2\right|\ge0\forall x\) mà \(-4< 0\)
\(\Rightarrow x\in\varnothing\)
Vậy : không có \(x\) thỏa mãn đề.
2, \(-4.\left|x-2\right|=8\)
\(\Leftrightarrow\left|x-2\right|=8:\left(-4\right)=-2\)
Ta thấy : \(\left|x-2\right|\ge0\forall x\) mà \(-2< 0\)
\(\Rightarrow x\in\varnothing\)
Vậy : không có \(x\) thỏa mãn đề.
3, \(2.\left(x-5\right)-3.\left(x+7\right)=12\)
\(\Leftrightarrow2x-10-3x-21=12\)
\(\Leftrightarrow2x-3x=12+10+21\)
\(\Leftrightarrow-x=43\)
\(\Leftrightarrow x=-43\)
Vậy : \(x=-43\)
4, \(7.\left(5-x\right)-2.\left(x+3\right)=15\)
\(\Leftrightarrow35-7x-2x-6=15\)
\(\Leftrightarrow-7x-2x=15-35+6\)
\(\Leftrightarrow-9x=-14\)
\(\Leftrightarrow x=\frac{14}{9}\)
Vậy : \(x=\frac{14}{9}\)
Chúc bạn học tốt !!!
1) \(5.\left|x+2\right|=10.\left(-2\right)\)
=> \(5.\left|x+2\right|=-20\)
=> \(\left|x+2\right|=\left(-20\right):5\)
=> \(\left|x+2\right|=-4\)
Ta luôn có \(\left|x\right|\ge0\) \(\forall x.\)
=> \(\left|x+2\right|>-4\)
=> \(\left|x+2\right|\ne-4\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
2) \(-4.\left|x-2\right|=8\)
=> \(\left|x-2\right|=8:\left(-4\right)\)
=> \(\left|x-2\right|=-2\)
Ta luôn có \(\left|x\right|\ge0\) \(\forall x.\)
=> \(\left|x-2\right|>-2\)
=> \(\left|x-2\right|\ne-2\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mã yêu cầu đề bài.
Mình chỉ làm 2 câu này thôi nhé.
Chúc bạn học tốt!