Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ƯCLN(a,b)=15 . Giả sử a<b
=>a=15k
b=15l (a,b\(\in\) N, (k,l)=1) =>k<l
a.b=15k.15l=15.300=4500
=>225kl=300
kl=20
a+15=b
=>15k+15=15l
=>15(k+1)=15l
=>k+1=l
=>k(k+1)=20
=>k=4, l=5
=>a=15.4=60
b=15.5=75
b) Ta có ab-ba=9.(a-b)=32.(a-b)
Để ab-ba là số chính phương thì a-b là số chính phương
Ta có \(1\le a-b< 9\)
=> \(a-b\in\) {1;4}
a-b=1 => ab \(\in\) {21;32;43;54;65;76;87;98}
Loại các hợp số, còn 43 là số nguyên tố
a-b=4 =>ab \(\in\){51;62;73;84;95}
Loại các hợp số, còn 73 là số nguyên tố
Vậy ab\(\in\){43;73}
ab – ba
= a.10+ b – (b.10 + a)
= 9(a – b) = 32 (a-b)
a – b là số chính phương và a>b>0 => a – b =1 hoặc a-b=4
a=4,b=3 hoặc a=7, b=3.
ab = 43 hoặc ab = 73.
Mình làm thế này có đúng không các bạn?
Ta có ab - ba = ( 10a + b ) - ( 10b + a ) = 10a + b - 10b - a = 9a - 9b = 9 ( a - b )
Ta có: 9 = 32 ( Là số chính phương ) nên a - b cũng phải là số chính phương
Theo đề bài ta có: 1 \(\le\) a - b \(\le\) 8
Vì a - b là số chính phương nên a - b \(\in\) { 1;4 }
Với a - b = 1 thì ab \(\in\) { 21;32;43;54;65;76;87;98 }
Loại đi các hợp số, còn 43 là số nguyên tố
Ta có 43 - 34 = 9 = 32
73 - 37 = 36 = 62
Ta có:
ab + ba = 10a + b + 10b + a = 11a + 11b = 11 ( a + b )
55 = 11,5
+ Nếu a + b chia hết cho 55 thì ƯCLN ( ab + ba ; 55 ) = 55
+ Nếu a + b không chia hết cho 55 thì ƯCLN ( ab + ba ; 55 ) = 11
vế trái=10a+b+10b+a=11a+11b=11x(a+b) 55=11x5
suy ra ƯCLN là 11