Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(2n+3;2n+5)
Ta có: 2n+3 chia hết cho d
2n+5 chia hết cho d
(2n+5)- (2n+3) chia hết cho d
2 chia hết cho d
Suy ra: d thuộc Ư(2)
Nên d = 1 hoặc d = 2
Mà ƯCLN
Vậy ƯCLN(2n+3;2n+5) = 2
Tick nếu đúng nha?
Đặt UCLN(2n + 1 ; 6n + 5) = d
2n + 1 chia hết cho d <=> 6n + 3 chia hết cho d
<=> [(6n + 5) - (6n +3) ] chia hết cho d
2 chia hết cho d nhưng 6n + 5 và 6n +3 lẻ
<=> d = 1
Vậy UCLN(2n + 1 ; 6n + 5) = 1
P/s tham khảo nha
Tìm UCLN(2n+1;6n+5)=1.
Còn cách giải thì mình không biết.
Đặt UCLN(2n + 1 ; 6n + 5) = d
2n + 1 chia hết cho d <=> 6n + 3 chia hết cho d
<=> [(6n + 5) - (6n +3) ] chia hết cho d
2 chia hết cho d nhưng 6n + 5 và 6n +3 lẻ
<=> d = 1
Vậy UCLN(2n + 1 ; 6n + 5) = 1
P/s tham khảo nha
Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)
=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 2 chia hết cho d
Mà 2n + 1 lẻ => d lẻ => d = 1
=> ƯCLN(2n + 1; 2n + 3) = 1
Chứng tỏ ...
Gọi ƯCLN(2n+1;6n+5) là a
Ta có 2n +1 chia hết cho a => 3(2n+1) chia hết cho a
=> 6n +3 chia hết cho a
Theo bài ra 6n+5 chia hết cho a => [(6n+5)-(6n+3)] chia hết cho a
=> 2 chia hết cho a
=> a thuộc Ư(2) ={1;2}
a không thể = 2 vì 6n+5 là số lẻ mà số lẻ thì không chia hết cho => a= 1
Vậy ƯCLN(2n+1;6n+5) = 1
Gọi ƯCLN(2n+1;6n+5) là a
Ta có 2n +1 chia hết cho a => 3(2n+1) chia hết cho a
=> 6n +3 chia hết cho a
Theo bài ra 6n+5 chia hết cho a => [(6n+5)-(6n+3)] chia hết cho a
=> 2 chia hết cho a
=> a thuộc Ư(2) ={1;2}
a không thể = 2 vì 6n+5 là số lẻ mà số lẻ thì không chia hết cho => a= 1
Vậy ƯCLN(2n+1;6n+5) = 1
cho nik Edogawa Conan của mik nha
Coi d là UC của 2n+3;14n+9
suy ra 2n+3 và 14n+9 chia hết cho d
suy ra 7(2n+3) chia hết cho d hay 14n+21 chia hết cho d
suy ra( 14n+21)-(14n+9) chia hết cho d
suy ra 12 chia hết cho d suy ra d thuộc Ư(12)
Vậy uwcln là 12