K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

ƯCLN =1

                               tick giùm ơn nhìu

3 tháng 1 2016

Gọi ƯCLN(2n+1;6n+5)=d

=>6n+5 chia hết cho d; 2n+1 chia hết cho d

6n+5-3(2n+1) chia hết cho d

2 chia hết cho d

d thuộc Ư(2)={1;2}

nếu d bằng 2

=>2n+1 chia hết cho 2

mà 2n chia hết cho 2

không tồn tại khi d=2

Vậy ƯCLN(2n+1;6n+5)=1

tick nha

3 tháng 1 2016

Goi UCLN(2n+1;6n+5)=d

Ta co:2n+1 chia hết cho d

         6n+5 chia hết cho d

=>3(2n+1) chia hết cho d

    6n+5 chia hết cho d

=>6n+3 chia hết cho d

    6n+5 chia hết cho d

=>(6n+5)-(6n+3) chia hết cho d

=>2 chia hết cho d

=>dEU(2)={1,2}

Mà 2n+1 không chia hết cho 2

=>d=1

 

25 tháng 11 2015

gọi UCLN(2n+1;6n+5)=d

ta có :

2n+1 chia hết cho d

=>3(2n+1) chia hết cho d

=>6n+3 chia hết cho d

6n+5 chia hết cho d

=>(6n+5)-(6n+3) chia hết cho d

=>2 chia hết cho d=>d thuộc U(2)={1;2} 

nếu d=2 thì 2n+1 ko chia hết cho d

nên d=1

=>UCLN(2n+1;6n+5)=1

 

 

1 tháng 12 2017

a) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1         ( n e N )

    Ta có : 4n + 3 \(⋮\)d                  ( 1 )

                2n + 1 \(⋮\)d hay 2 ( 2n + 1 ) \(⋮\)d = 4n + 2 \(⋮\)d                      ( 2 )

      Từ ( 1 ) và ( 2 ) suy ra :       ( 4n + 3 ) - ( 4n + 2 ) \(⋮\)d

                                          hay          1 \(⋮\)d      suy ra       d = 1

                       Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1 

b)   Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5 

      Ta có : 6n + 1 \(⋮\)d hay 2 ( 6n + 1 ) \(⋮\)d = 12n + 2 \(⋮\)d                  ( 1 )

                  4n + 5 \(⋮\)d hay 3 ( 4n + 5 ) \(⋮\)d = 12n + 15 \(⋮\)d                  ( 2 )

        Từ ( 1 ) và ( 2 ) suy ra

             ( 12n + 15 ) - ( 12n + 2 ) \(⋮\)d

       Hay 13 \(⋮\)d

      Suy ra d e ƯC ( 13 ) = { 1 ; 13 }

          Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13

                  suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2       ( k e N )

                    Suy ra với n \(\ne\)13k + 2 thì 6n + 1 không chia hết cho 13  nên d không thể là 13.

             Do đó d = 1 

                    Vậy ƯCLN ( 6n + 1 , 4n + 5 ) = 1

  

3 tháng 12 2017

) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d
hay 1 ⋮d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) ⋮d
Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

28 tháng 12 2016

1 . goi UCLN ( 2n + 1,6n + 5 ) la d

=> 2n + 1 chia hết cho d (1)

6n + 5 chia hết cho d  (2)

từ (1)=> 6 x ( 2n + 1 ) = 12n + 6 chia hết cho d (3)

từ (2) => 2 x ( 6n + 5 ) = 12n + 10  chia hết cho d (4)

Tu (3) va (4) => ( 12n + 10 ) - (12n + 6 ) chia het cho d

hay 4 chia hết cho d=> d thuộc { 1,2,4}

Mà d là lớn nhất => d = 4

2). 2x + 11 chia hết cho x + 3

(2x + 6 ) + 5 chia het cho x + 3

2 x ( x + 3 ) + 5 chia hết cho x + 3 (1)

Ma 2 x ( x + 3 ) chia het cho x + 3 (2)

Từ (1) và (2) => 5 chia hết cho x + 3

=> X + 3 thước U của 5 hay x + 3 thuộc { 1,5}

                                           x thuộc { -2,2}

Mà x thuộc N => x = 2