Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a) 12 - x= 1-(-5)
12 - x = 6
x= 12-6
x=6
b)| x+4|= 12
x+4 = \(\pm\)12
*x+4=12
x=8
*x+4= -12
x=-16
2/Tìm n
\(n-5⋮n+2\)
=> \(n+2-7⋮n+2\)
mà \(n+2⋮n+2\)
=> 7\(⋮\)n+2
=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}
n+2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
3/a)4.(-5)2 + 2.(-12)
= 2.2.(-5)2 + 2.(-12)
=2[2.25.(-12)]
=2.(-600)
=-1200
1, Vì n+2016, n+2017,n+2018 là 3 số tự nhiên liên tiếp nên tích chia hết cho 3
2, n2\(⋮\)n+1 (1)
Vì n+1\(⋮\)n+1 => (n+1)(n-1)\(⋮\)n+1
=> n2-1\(⋮\)n+1 (2)
Lấy (1) trừ (2) ta có 1\(⋮\)n+1
=>n+1=1=> n=0
Với \(3^{2n}\): Do 3>0 => \(3^{2n}\)>0
Với \(-3^{2n+1}\): Do -3<0 mà 2n+1 là số lẻ =>\(-3^{2n+1}\)<0
Từ đó, \(-3^{2n+1}\)<0<\(3^{2n}\)hay \(-3^{2n+1}\)<\(3^{2n}\)
gọi d thuộc ƯC(n(n+1)/2 ; 2n+1) với d thuộc N*
=>n(n+1)/2 chia hết cho d hay n.(n+1) chia hết cho d và 2n+1 chia hết cho d
=>n(2n+1)-n(n+1) chia hết cho d
=>2n^2+n-n^2+n chia hết cho d =>n^2+(n^2+n-n^2+n) chia hết cho d
=>n^2 chia hết cho d
TỪ n.(n+1)=n^2+n chia hết cho d và n^2 chia hết cho d =>n chia hết cho d
Ta lại có 2n+1 chia hết cho d,mà n chia hết cho d=> 2n chia hết cho d =>1 chia hết cho d =>d=1
gọi d là UCLN (2n+1:3n+1)
ta có 2n+1 chia hết cho d suy ra 3.(2n+1) chia hết cho d suy ra 6n+3 chia hết cho d
3n+1 chia hết cho d 2.(3n+1) chia hết cho d 6n+2 chia hết cho d ta lấy 6n-6n là hết;3-2=1
suy ra d=1
UCLN(2n+1;3n+1)=1