K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

Gọi ƯCLN(2^1995-1;2^60-1)=d

Ta có: 2^1995-1 chia hết cho d; 2^60-1 chia hết cho d

-)32768^133-1 chia hết cho d; 32768^4-1 chia hết cho d

=>32768^133-1-32768^4+1 chia hết cho d

=>32768^133-32768^4 chia hết cho d

=>32768^4(32768^129-1) chia hết cho d

=> 32768 chia hết cho d hay 32768^129-1 chia hết cho d

mà d là ước chung lớn nhất(để ý từ ước chung)

nên d=32768

Vậy ƯCLN(21995-1;260-1)=32768

26 tháng 7 2018

2^61-1

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0
6 tháng 10 2019

a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)

\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)

Chúc bạn học tốt!

4 tháng 12 2016

Giải:

a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)

\(\Rightarrow x=10k,y=6k\)

\(xy=60\)

\(\Rightarrow10k6k=60\)

\(\Rightarrow60k^2=60\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow x=10;y=6\)

+) \(k=-1\Rightarrow x=-10;y=-6\)

Vậy cặp số \(\left(x;y\right)\)\(\left(10;6\right);\left(-10;-6\right)\)

b) Hình như đề sai !!!

c) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)

( x, y cùng dấu )

Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
 

4 tháng 12 2016

b) x-1/2=y-2/3=z-3/4 vã-2y+3z=16