Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Điều kiện: 1 - sin2x \(\ne\) 0
<=> sin2x \(\ne1\)
<=> \(x\ne\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)
TXĐ: D = R\ {\(\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)}
b. ĐKXĐ cos(4x+\(\dfrac{\pi}{3}\)) \(\ne\)0 => 4x+\(\dfrac{\pi}{3}\)= \(\dfrac{\pi}{2}\)+k\(\pi\) => x=\(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z
==> TXĐ: D= R\ { \(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z }
2.
a. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)
Miền xác định đối xứng
\(f\left(-x\right)=\frac{-x+tan\left(-x\right)}{\left(-x\right)^2+1}=\frac{-x-tanx}{x^2+1}=-\frac{x+tanx}{x^2+1}=-f\left(x\right)\)
Hàm lẻ
b. \(f\left(-x\right)=\frac{5\left(-x\right).cos\left(-5x\right)}{sin^2\left(-x\right)+2}=\frac{-5x.cos5x}{sin^2x+2}=-f\left(x\right)\)
Hàm lẻ
c. \(f\left(-x\right)=\left(-2x-3\right)sin\left(-4x\right)=\left(2x+3\right)sin4x\)
Hàm không chẵn không lẻ
d. \(f\left(-x\right)=sin^4\left(-2x\right)+cos^4\left(-2x-\frac{\pi}{6}\right)\)
\(=sin^42x+cos^4\left(2x+\frac{\pi}{6}\right)\)
Hàm ko chẵn ko lẻ
1. ĐKXĐ:
a.
\(cos\left(x-\frac{\pi}{4}\right)\ne0\)
\(\Leftrightarrow x-\frac{\pi}{4}\ne\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\frac{3\pi}{4}+k\pi\)
b.
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
c.
Hàm xác định trên R
d.
\(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
do hàm \(\cos x,\sin x\)luôn xđ trên R nên:
a) Y xđ \(\Leftrightarrow\frac{x+1}{x+2}xđ\Leftrightarrow x\ne-2\)\(\Rightarrow D=R\backslash\left\{-2\right\}\)
b) y xđ\(\Leftrightarrow x+4\ge0\Leftrightarrow x\ge-4\Rightarrow D=[-4,+\infty)\)
c) Y xđ \(\Leftrightarrow x^2-3x+2\ge0\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le1\end{cases}\Rightarrow}D=(-\infty,1]U[2,+\infty)\)
\(\Leftrightarrow y=3\cos2x-2\left(\dfrac{1+\cos2x}{2}\right)+5\)
\(\Leftrightarrow y=3\cos2x-1-\cos2x+5\)
\(\Leftrightarrow y=2\cos2x+4\)
\(Vì\) \(-1\le\cos2x\le1\)
\(\Rightarrow-2\le2\cos2x\le2\)
\(\Rightarrow2\le2\cos2x+4\le6\)
\(\Rightarrow2\le y\le6\)
\(Vậy\) \(y_{max}=6\)
\(y_{min}=2\)