K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2020

4 câu giống nhau, mình làm câu a, bạn tự làm 3 câu còn lại hoàn toàn tương tự:

a/ Đường thẳng d nhận \(\left(1;-2\right)\) là 1 vtpt

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' nhận \(\left(2;1\right)\) là 1 vtpt

Phương trình d':

\(2\left(x-4\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-9=0\)

Gọi H là hình chiếu vuông góc của M lên d \(\Rightarrow\) H là giao điểm của d và d'

Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}x-2y+4=0\\2x+y-9=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{14}{5};\frac{17}{5}\right)\)

Gọi M' là điểm đối xứng với M qua d \(\Rightarrow\) H là trung điểm MM'

Tọa độ M': \(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=\frac{8}{5}\\y_{M'}=2y_H-y_M=\frac{29}{5}\end{matrix}\right.\) \(\Rightarrow M'\left(\frac{8}{5};\frac{29}{5}\right)\)

20 tháng 4 2020

mình cảm ơn nhiều ạ

8 tháng 4 2020

trl ; bạn kia đúng r

-

_

----------------

6 tháng 3 2020

mỗi bài, mk làm một phần ví dụ cho cậu nhé

nó đối xứng với nhau qua pt đường thẳng đenta,

trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau 

lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1)  là điểm thuộc đường thẳng (d)

lấy A' đối xứng với A qua (đen ta) 

liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)

đồng thời giao điểm của  AA' với (đen ta) là trung điểm của  AA' 

dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)

từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4) 

vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)

áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0

gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)

mà I là trung điểm của AA' 

chắc chắn cậu sẽ dễ dàng suy ra điểm A'

mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')

16 tháng 9 2018

Đáp án C

+phương trình ∆ đi qua M (8; 2) và vuông góc với d  là:

3 (x-8) +2(y-2) =0 hay 3x+2y -28= 0.

+ Gọi  H = d ∩ ∆ ⇒ H ( 6 ; 5 )

+ Khi đó H là trung điểm của đoạn MM’. Áp dụng công thức trung điểm ta suy ra

Vậy M’( 4;8) .

20 tháng 12 2022

MH vuông góc với d

nên MH nhận vecto (2;-3) làm VTCP

=>VTPT là (3;2)

Phương trình MH là:

3(x+5)+2(y-13)=0

=>3x+15+2y-26=0

=>3x+2y-11=0

Tọa độ H là:

2x-3y=3 và 3x+2y=11

=>x=3 và y=1

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_N+\left(-5\right)=2\cdot3=6\\y_N+13=2\cdot1=2\end{matrix}\right.\Leftrightarrow N\left(11;-11\right)\)

NV
20 tháng 4 2020

Bài 3:

Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M là nghiệm:

\(\left\{{}\begin{matrix}x+y-1=0\\x-3y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(0;1\right)\)

Gọi \(A\left(1;0\right)\) là 1 điểm thuộc \(d_1\)

\(d_3\) đối xứng \(d_2\) qua \(d_1\Leftrightarrow d_1\) là phân giác góc tạo bởi \(d_2;d_3\)

\(\Rightarrow d_3\) qua M và \(d\left(A;d_3\right)=d\left(A;d_2\right)\)

Gọi pt \(d_3\) có dạng \(a\left(x-0\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-b=0\)

Theo công thức khoảng cách:

\(\frac{\left|a.1+b.0-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|1-3.0+3\right|}{\sqrt{1+3^2}}\Leftrightarrow\frac{\left|a-b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{8}}{\sqrt{5}}\)

\(\Leftrightarrow5\left(a-b\right)^2=8\left(a^2+b^2\right)=3a^2+10ab+3b^2=0\)

\(\Leftrightarrow\left(a+3b\right)\left(3a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=-3b\\b=-3a\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}-3bx+by-b=0\\ax-3ay+3a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=0\\x-3y+3=0\end{matrix}\right.\)

NV
20 tháng 4 2020

Bài 2:

a/ Gọi d' là đường thẳng qua M và vuông góc d

\(\Rightarrow d'\) nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d':

\(2\left(x-2\right)-1\left(y-5\right)=0\Leftrightarrow2x-y+1=0\)

H là giao điểm của d và d' nên tọa độ H là nghiệm:

\(\left\{{}\begin{matrix}x+2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow H\left(0;1\right)\)

b/ M' đối xứng M qua d \(\Leftrightarrow H\) là trung điểm \(MM'\)

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_H-x_M\\y_{M'}=2y_H-y_M\end{matrix}\right.\) \(\Rightarrow M'\left(-2;-3\right)\)

c/ d' đối xứng d qua M \(\Rightarrow\) phương trình d' có dạng: \(x+2y+c=0\) với \(c\ne-2\)

Ta có: \(d\left(M;d\right)=d\left(M;d'\right)\)

\(\Leftrightarrow\frac{\left|2+2.5-2\right|}{\sqrt{1^2+2^2}}=\frac{\left|2+2.5+c\right|}{\sqrt{1^2+2^2}}\)

\(\Rightarrow\left|c+12\right|=10\Rightarrow\left[{}\begin{matrix}c=-2\left(l\right)\\c=-22\end{matrix}\right.\)

Phương trình d': \(x+2y-22=0\)