\(\frac{1}{1.1981}\)+\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Ta có: \(\frac{1}{n.\left(1980-n\right)}\)=\(\frac{1}{1980}\).\(\left(\frac{1}{n}-\frac{1}{1980+n}\right)\)                                                                                                   (1)

           \(\frac{1}{m.\left(25+m\right)}\)=\(\frac{1}{25}\).\(\left(\frac{1}{25}-\frac{1}{25+m}\right)\)                                                                                                           (2)

Áp dụng khai triển (1) cho mỗi số hạng của A và khai triển (2) cho mỗi số hạng của B, ta được:

A=\(\frac{1}{1980}\).\(\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{25}-\frac{1}{2005}\right)\)

  =\(\frac{1}{1980}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)                                                     (3)

Nhận thấy hai biểu thức trong hai dấu ngoặc vế bên phải của B có phần chung là:\(\frac{1}{26}\)+\(\frac{1}{27}\)+...+\(\frac{1}{1980}\).Do đó, sau khi rút gọn, ta được:

B=\(\frac{1}{25}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)                                                          (4)

Từ (3) và (4), suy ra: A:B=\(\frac{25}{1980}\)=\(\frac{5}{396}\)

Vậy ta được \(\frac{A}{B}\)=\(\frac{5}{396}\)

25 tháng 3 2017

5/396

25 tháng 11 2018

Trả lời:

bạn tham khảo ở link này: https://h.vn/hoi-dap/question/227001.html

Học tốt

25 tháng 11 2018

ta có : \(\frac{1}{n\left(1980-n\right)}=\frac{1}{1980}\left(\frac{1}{n}-\frac{1}{1980+n}\right)\)       ( 1 )

           \(\frac{1}{m\left(25+m\right)}=\frac{1}{25}\left(\frac{1}{m}-\frac{1}{25+m}\right)\)               ( 2 )

áp dụng triển khai  (1) cho mỗi số hạng của  A và triển khai (2) cho mỗi số hạng B , ta được :

\(A=\frac{1}{1980}\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+....+\frac{1}{25}-\frac{1}{2005}\right)\)

     \(=\frac{1}{1980}\left[\left(\frac{1}{1}+\frac{1}{2}+....+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)    (3)

\(B=\frac{1}{25}\left(\frac{1}{1}-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+....+\frac{1}{1980}-\frac{1}{2005}\right)\)

    \(=\frac{1}{25}\left[\left(\frac{1}{1}+\frac{1}{2}+....+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{2005}\right)\right]\)

nhận thấy hai biểu thức trong hai dấu ngoặc vế bên phải của B có phần chung là :

\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{1980}\) . do đó , sau khi rút gọn , ta được :

\(B=\frac{1}{25}\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)   (4)

từ (3) Và (4)  :

\(\Rightarrow A:B=\frac{25}{1980}\) 

vậy , ta được \(\frac{A}{B}=\frac{25}{1980}=\frac{5}{396}\)

25 tháng 9 2015

\(A=\frac{1}{1980}.\left(\frac{1981-1}{1.1981}+\frac{1982-2}{2.1982}+...+\frac{1980+n-n}{n\left(1980+n\right)}+...+\frac{2005-25}{25.2005}\right)\)

\(A=\frac{1}{1980}.\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{n}-\frac{1}{1980+n}+...+\frac{1}{25}-\frac{1}{2005}\right)\)

\(A=\frac{1}{1980}.\left(\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right)\) (1)

\(B=\frac{1}{25}.\left(\frac{26-1}{1.26}+\frac{27-2}{2.27}+...+\frac{25+m-m}{m\left(25+m\right)}+...+\frac{2005-1980}{1980.2005}\right)\)

\(B=\frac{1}{25}.\left(\frac{1}{1}-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{m}-\frac{1}{25+m}+...+\frac{1}{1980}-\frac{1}{2005}\right)\)

\(B=\frac{1}{25}.\left(\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{1980}+\frac{1}{1981}+...+\frac{1}{2005}\right)\right)\)

\(B=\frac{1}{25}.\left(\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right)\) (2)

Từ (1)(2) => A/ B = \(\frac{1}{1980}:\frac{1}{25}=\frac{5}{396}\)

 

13 tháng 1 2019

chịch

7 tháng 3 2018

\(C=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.........\frac{2499}{2500}\)

\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}......\frac{49.51}{50^2}\)

\(=\frac{2.3.4....49}{3.4.5....50}.\frac{4.5.6....51}{3.4.5....50}\)

\(=\frac{1}{25}.17=\frac{17}{25}\)

7 tháng 3 2018

\(a)\) \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{1000}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)

\(A=\frac{1.2.3.....999}{2.3.4.....1000}\)

\(A=\frac{1}{1000}.\frac{2.3.4.....999}{2.3.4.....999}\)

\(A=\frac{1}{1000}\)

Vậy \(A=\frac{1}{1000}\)

7 tháng 3 2018

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)

\(=\frac{1}{1000}\)

chúc

bn

hk

tốt

Câu 1(4,5 điểm) 1. Thực hiện phép tính:A=\(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)B=\(\frac{2^{30}\cdot5^7+2^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)C=\(\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)2. Tìm x biết: \(\left(4+2^2+2^3+2^4+...+2^{20}\right)\cdot x=2^{22}-2^{21}\)Câu 2 (4,0 điểm)1. Cho phân...
Đọc tiếp

Câu 1(4,5 điểm) 

1. Thực hiện phép tính:

A=\(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)

B=\(\frac{2^{30}\cdot5^7+2^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)

C=\(\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)

2. Tìm x biết: \(\left(4+2^2+2^3+2^4+...+2^{20}\right)\cdot x=2^{22}-2^{21}\)

Câu 2 (4,0 điểm)

1. Cho phân số: \(\frac{1+2+3+...+9}{11+12+13+...+19}\)

(tử số là tổng các số tự nhiên từ 1 đến 9; mẫu số là tổng các số tự nhiên từ 11 đến 19)

a) Rút gọn phân số trên

b) Hãy xoá một số hạng ở tử số và một số hạng ở mẫu số để được một phân số mới có giá trị bằng phân số ban đầu.

2. So sánh: D=\(\frac{8^{10}+1}{8^{10}-1}\)và E= \(\frac{8^{10}-1}{8^{10}-3}\)

Câu 3 (4,5 điểm)

1. Cho F=\(\frac{n^2+1}{n^2-3}\).Tìm số nguyên n để F có giá trị là số nguyên.

2. Cho G=\(\frac{1}{100^2}+\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{198^2}+\frac{1}{199^2}\). Chứng minh rằng: \(\frac{1}{200}< G< \frac{1}{99}\)

3. Tìm hai số biết tổng của chúng bằng 162 và ƯCLN của chúng là 18

Câu 4: (5,5 điểm) Cho hai góc AOx và góc BOx có chung cạnh Ox và hai góc này không kề nhau

1. Cho \(\widehat{AOx}=38^o\)và \(\widehat{BOx}=112^o\).

a) Trong ba tia OA,OB,Ox tia nào nằm giữa hai tia còn lại? Vì sao?

b) Tính \(\widehat{AOB}\).

c) Vẽ tia phân giác OM của \(\widehat{AOB}\). Tính \(\widehat{MOx}\)

2. Cho \(\widehat{AOx}=m\)và \(\widehat{BOx}=n\), trong đó \(0^o< m+n< 180^o\). Tìm điều kiện giữa \(m\)và \(n\)để tia OA nằm giữa hai tia OM và Ox. Khi đó hãy tính \(\widehat{MOx}\)theo \(m\)và \(n\).

Câu 5: (1,5 điểm) Cho bốn số nguyên dương \(a,b,c,d\)thoả mãn đẳng thức \(a^2+b^2=c^2+d^2\). Chứng minh rằng tổng \(a+b+c+d\)là một hợp số

 

 

 

0

Bài 1 : 

\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)

     \(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)

      \(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)

      \(=\frac{13.\left(84+70+63+60\right)}{2520}\)

       \(=\frac{13.277}{2520}\)

Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)

Vậy a chia hết cho 13

Bài 2 :

Ta có :  \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)

Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)

Từ (1)  ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau

Suy ra ;\(b'⋮b\left(2\right)\)

Tương tự ta cũng có \(b⋮b\left(3\right)\)

Từ (2 ) và (3 ) suy ra \(b=b'\)

Chúc bạn học tốt ( -_- )

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) B= \(\frac{x-2}{x+3}\)C = \(\frac{2.x+1}{x-3}\)bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.bài 3 :...
Đọc tiếp

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) 

B= \(\frac{x-2}{x+3}\)

C = \(\frac{2.x+1}{x-3}\)

bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.

bài 3 : tính

A= \(\left(1-\frac{2}{5}\right)\)\(\left(1-\frac{2}{7}\right)\).\(\left(1-\frac{2}{9}\right)\).......\(\left(1-\frac{2}{2011}\right)\)

B= \(\left(1+\frac{2}{3}\right)\).\(\left(1+\frac{2}{5}\right)\).\(\left(1+\frac{2}{7}\right)\).........\(\left(1+\frac{2}{2009}\right)\)\(\left(1+\frac{2}{2011}\right)\)

bài 4 : chứng tỏ rằng 

\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ .......+ \(\frac{1}{49.50}\)< 1

bài 5: rút gọn biểu thức sau

A= \(\frac{3.5.7.11.13.37-10101}{1212120+40404}\)

1
20 tháng 4 2017

bài 1 A là số nguyên <=> 3 chia hết cho (x-1) <=> (x-1) thuộc Ư(3) = { 1;-1;3;-3}

<=> x thuộc {2;0;4;-2}