Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(\cos x\ne0\)( vì tan x = sinx/cosx nên cos x khác 0)
<=> \(x\ne\frac{\pi}{2}+k\pi\); k thuộc Z
TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z
b) ĐK: \(1+\cos2x\ne0\Leftrightarrow\cos2x\ne-1\Leftrightarrow2x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\); k thuộc Z
=> TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z
c) ĐK: \(\hept{\begin{cases}\cot x-\sqrt{3}\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{\pi}{6}+k\pi\text{}\text{}\\x\ne l\pi\end{cases}}\); k,l thuộc Z
=>TXĐ: ....
d) ĐK: \(1-2\sin^2x\ne0\Leftrightarrow\cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
=> TXĐ:...
Do \(m^2-2m+1=\left(m-1\right)^2\ge0>-1;\forall m\) nên phương trình đã cho vô nghiệm khi:
\(m^2-2m+1>1\)
\(\Leftrightarrow m^2-2m>0\)
\(\Rightarrow\left[{}\begin{matrix}m>2\\m< 0\end{matrix}\right.\)
Do \(-1\le sinx\le1\)
\(\Rightarrow\) Để pt đã cho có nghiệm thì:
\(-1\le m+1\le1\)
\(\Rightarrow-2\le m\le0\)
\(\Leftrightarrow2\left(sin^2x+cos^2x\right)-4sin^2x.cos^2x+\left(m+2\right)sin2x-2m-2=0\)
\(\Leftrightarrow-sin^22x+\left(m+2\right)sin2x-2m=0\)
\(\Leftrightarrow-sin^22x+2sin2x+m.sin2x-2m=0\)
\(\Leftrightarrow-sin2x\left(sin2x-2\right)+m\left(sin2x-2\right)=0\)
\(\Leftrightarrow\left(m-sin2x\right)\left(sin2x-2\right)=0\)
\(\Leftrightarrow sin2x=m\)
Mà \(-1\le sin2x\le1\) \(\Rightarrow-1\le m\le1\)
1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)
=> a^2 + b^2 =4 > c^2 = 2
Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:
<=> 1/2cos7x - √3/2 sin7x = -√2/2
<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)
<=> sin(π/6 - 7x) = sin(-π/4)
<=> π/6 - 7x = -π/4 + k2π
hoặc (k∈Z)
π/6 - 7x = π + π/4 + k2π
<=> x = 5π/84 + k2π/7
hoặc (k∈Z)
x = -13π/84 + k2π/7
1) b) Ta có:
* 2π/5 < x < 6π/7
<=> 2π/5 < 5π/84 + k2π/7 < 6π/7
<=> 143π/420 < k2π/7 < 67π/84
<=> 143/120 < k < 67/24
=> k ϵ {2}
=> x = 53π/84
* 2π/5 < x < 6π/7
<=> 2π/5 < -13π/84 + k2π/7 < 6π/7
<=> 233/120 < k < 85/24
=> k ϵ {2; 3}
=> x = 5π/12 ; x = 59π/84
Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.
a/
\(\left(m+1\right)^2+\left(m-1\right)^2\ge\left(2m+3\right)^2\)
\(\Leftrightarrow2m^2+12m+7\le0\)
\(\Leftrightarrow\frac{-6-\sqrt{22}}{2}\le m\le\frac{-6+\sqrt{22}}{2}\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m-1\right)^2+4m\ge m^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^4-\left(m+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m^2+m+1\right)\left(m^2-m-1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le m\le\frac{1+\sqrt{5}}{2}\)
c/ \(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}=m\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)+\frac{1}{2}=m\)
Do \(-\frac{1}{2}\le sin\left(2x-\frac{\pi}{3}\right)\le\frac{3}{2}\Rightarrow-\frac{1}{2}\le m\le\frac{3}{2}\)
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
\(sinx=m^2-5m+1\Leftrightarrow sinx=\left(m-1\right)^2\) (1)
Pt có nghiệm: \(\Rightarrow-1\le sinx\le1\)
\(\Rightarrow\) \(0\le\left(m-1\right)^2\le1\)
\(\Rightarrow\)\(0\le m-1\le1\Rightarrow-1\le m\le0\)
Với \(m\in\left[-1;0\right]\) thì (1) có nghiệm.
Để pt (1) không có nghiệm \(\Rightarrow m\in\left(-\infty;-1\right)\cup\left(0;+\infty\right)\)