\(\left(3+\sqrt{2}\right)^m=\left(1+2\sqrt{3}\right)^n\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(p^2=5q^2+4\)chia 5 dư 4

=>p=5k+2\(\left(k\inℕ^∗\right)\)

Ta có : \(\left(5k+2\right)^2=5q^2+4\)

\(\Leftrightarrow5k^2+4k=q^2\Rightarrow q^2⋮k\)

Mặt khác q là số nguyên tố và q>k nên k=1

Thay vào ta được p=7,q=3

9 tháng 2 2019

Làm thử theo cách cổ truyền vậy -.-

Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)

\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)

\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)

Coi pt trên là pt bậc 2 ẩn n

Ta có : \(\Delta=4m^4+4m^2+32m-63\)

Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương

Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)

Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)

Khi đó  \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)

Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)

Nên điều giả sử là sai .

Tức là\(m\le2\)

Mà \(m\inℕ^∗\)

\(\Rightarrow m\in\left\{1;2\right\}\)

*Với m = 1 thì pt ban đầu trở thành

\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)

\(\Leftrightarrow n^2+n+1=-5\)

\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)

Pt vô nghiệm

*Với m = 2 thì pt ban đầu trở thành

\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)

\(\Leftrightarrow n^2+n+1=21\)

\(\Leftrightarrow n^2+n-20=0\)

\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)

\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)

Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)

Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC ,  ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC

CMR: a,P ; I ; Q thẳng hàng

          b, đường thẳng PQ đi qua trung điểm HK 

1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố 2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương 3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\) b) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố

2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương

3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\)

b) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\le2\)

c) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=3\end{matrix}\right.\). Tìm min \(P=\frac{1}{2xy^2+1}+\frac{1}{2yz^2+1}+\frac{1}{2zx^2+1}\)

d) \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=3\end{matrix}\right.\). Tìm max \(P=a\sqrt[3]{b^3+1}+b\sqrt[3]{c^3+1}+c\sqrt[3]{a^3+1}\)

e) \(\left\{{}\begin{matrix}-1\le a,b,c\le1\\0\le x,y,z\le1\end{matrix}\right.\). Max \(P=\left(\frac{1-a}{1-bz}\right)\left(\frac{1-b}{1-cx}\right)\left(\frac{1-c}{1-ay}\right)\)

f) \(\left\{{}\begin{matrix}a,b>0\\a+2b\le3\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\)

g) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=x+y+z+2\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{x^2+2}}+\frac{1}{\sqrt{y^2+2}}+\frac{1}{\sqrt{z^2+2}}\)

h) \(a,b,c>0\). Tìm min \(P=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+2\sqrt{a^2+bc}\)

3
11 tháng 12 2019

3 g) \(xyz=x+y+z+2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\Sigma_{cyc}\left(x+1\right)\left(y+1\right)\)

\(\Rightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\) .Đặt \(\frac{1}{x+1}=a;\frac{1}{y+1}=b;\frac{1}{z+1}=c\Rightarrow x=\frac{1-a}{a}=\frac{b+c}{a};y=\frac{c+a}{b};z=\frac{a+b}{c}\) vì a + b + c = 1.

Khi đó \(P=\Sigma_{cyc}\frac{1}{\sqrt{\frac{\left(b+c\right)^2}{a^2}+2}}=\Sigma_{cyc}\frac{a}{\sqrt{2a^2+\left(b+c\right)^2}}\)

\(=\sqrt{\frac{2}{9}+\frac{4}{9}}.\Sigma_{cyc}\frac{a}{\sqrt{\left[\left(\sqrt{\frac{2}{9}}\right)^2+\left(\sqrt{\frac{4}{9}}\right)^2\right]\left[2a^2+\left(b+c\right)^2\right]}}\)

\(\le\sqrt{\frac{2}{3}}\Sigma_{cyc}\frac{a}{\sqrt{\left[\frac{2}{3}a+\frac{2}{3}b+\frac{2}{3}c\right]^2}}=\frac{\sqrt{6}}{2}\left(a+b+c\right)=\frac{\sqrt{6}}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=2\)

11 tháng 12 2019

3c) Nhìn quen quen, chả biết có lời giải ở đâu hay chưa nhưng vẫn làm:D (Em ko quan tâm nha!)

\(P=3-\Sigma_{cyc}\frac{2xy^2}{xy^2+xy^2+1}\ge3-\Sigma_{cyc}\frac{2xy^2}{3\sqrt[3]{\left(xy^2\right)^2}}=3-\frac{2}{3}\Sigma_{cyc}\sqrt[3]{\left(xy^2\right)}\)

\(\ge3-\frac{2}{3}\Sigma_{cyc}\frac{x+y+y}{3}=3-\frac{2}{3}\left(x+y+z\right)=3-2=1\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

17 tháng 3 2020

\(\sqrt{a^2+\left(2^{a-3}+2^{-a-1}\right)^2}+\sqrt{a^4+a^2+2}=\sqrt{\left(a^2+a+1\right)^2+\left(1+2^{a-3}+2^{-a-1}\right)^2}\)

đề thế cơ mà , làm t nghĩ mà đell nghĩ đc j .

làm này . 

Không mất tính tổng quát 

đặt \(x=a>0,y=2^{a-3}+2^{-a-1}>0,z=a^2+1>0,t=1>0\)

khi đó phương trình trở thành

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}=\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(1\right)\)

Mặt khác ta cũng có :\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(2) zới mọi \(x,y,z,t>0\)

\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)( biến đổi từ cái trên nhá )

\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)

\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+y^2t^2+2xyzt\Leftrightarrow\left(yz-xt\right)^2\ge0\)(luôn đúng zới mọi x,y,z,t > 0)

zậy từ (1) zà (2) xảy ra khi zà chỉ khi yz=xt

=>\(\left(2^{a-3}+2^{-a-1}\right)\left(a^2+1\right)=a\Leftrightarrow\left(2^{a-3}+2^{-a-1}\right)=\frac{a}{a^2+1}\left(3\right)\)(zì \(a^2+1>0\)

mà lại có \(\frac{a}{a^2+1}\le\frac{1}{2}\)(zì \(\left(a-1\right)^2\ge0\), dấu "=" xảy ra khi a=1 (4)

zà \(\left(2^{a-3}+2^{-a-1}\right)=\frac{2^a}{8}+\frac{1}{2.2^a}\ge\frac{1}{2}\)(theo cô-si nha) ,dấu "=" xảy ra khi a=1 (5)

zậy từ (3) , (4) , (5) \(=>a=1\)là giá trị nguyên dương duy nhất cần tìm

17 tháng 3 2020

à thì ra ghi dài quá nó cho xuống dòng

làm t cứ tưởng

hì hì