\(2^a+37=\left|b-45\right|+b-45\)

Cho 4 số kh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Bài 2:

Vì vai trò \(a,b,c,d\) bình đẳng.

Giả sử \(a\ge b\ge c\ge d\) khi đó:

\(S=\left|a-b\right|+\left|a-c\right|+\left|a-d\right|+\left|b-c\right|+\left|b-d\right|+\left|c-d\right|\)

\(=\left(a-b\right)+\left(a-c\right)+\left(a-d\right)+\left(b-c\right)+\left(b-d\right)+\left(c-d\right)\)

\(=\left(3a+b\right)-\left(c+3d\right)\)

Do \(c+3d\ge0\Rightarrow S\le3a+b\)

\(S=3a+b\) khi \(c=d=0\), lúc đó \(a+b=1\)

Do \(a\le1\) ta có:

\(S=2a+\left(a+b\right)=2a+1\le2.1+1\)

Hay \(S\le3\)

Vậy \(S_{max}=3\) khi \(\left(a,b,c,d\right)=\left(1;0;0;0\right)\) và các hoán vị của nó

15 tháng 10 2015

Giả sử abcd0

Ta có S =|a-b|+|b-c|+|c-d|+|a-c|+|a-d|+|b-d|

=> S = a – b + b – c + c – d + a – c + a – d + b – d  

=> S = 3a + b – (c + 3d)

Mà c + 3d 0 => S3a + b

Mặt khác a + b + c + d = 1 => a  1.  

Suy ra S = 3a + b = 2a + a + b  2.1 + 1 = 3

              c+3d=0

Dấu bằng xảy ra khi a+b+c+d=1

                                                    } <=>{a=1b=c=d=0 

                                       a=1

Vậy S lớn nhất bằng 3 khi trong bốn số a, b, c, d có một số bằng 1 còn ba số bằng 

8 tháng 4 2016

tl rõ rõ cía

8 tháng 12 2017

Không mất tính tổng quát, ta giả sử \(a\le b\le c\le d< 1\)

Xét tổng \(S=\left|d-c\right|+\left|d-b\right|+\left|d-a\right|+\left|c-b\right|+\left|c-a\right|+\left|b-a\right|\)

\(=\left(3d+c\right)-\left(b+3a\right)\)

Do \(b+3a\ge0\Rightarrow S\le3d+c\)

S = 3d + c khi a = b = 0 , khi đó d + c = 1.

Do \(d\le1\Rightarrow S=2d+\left(d+c\right)=2d+1\le2.1+1=3\)

Vậy maxS = 3 khi \(\left(a,b,c,d\right)=\left(1,0,0,0\right)\) và các hoán vị của nó.

10 tháng 12 2017

Tìm hai số biết tổng là 0,75 và tỉ số cũng là 0,75
Tìm hai số biết tổng của

10 tháng 4 2019

Câu hỏi của lê thị ngọc tú:Bạn tham khảo câu 2 tại đây nhé!

10 tháng 4 2019

còn cau 1 với câu 3 :(( box nào giúp t với >: 

Bài 1 Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)Bài 2Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)CMR \(\frac{A}{B}\)là 1 số nguyênBài 3a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307b) Cho đa thức...
Đọc tiếp

Bài 1 

Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)

Bài 2

Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)

CMR \(\frac{A}{B}\)là 1 số nguyên

Bài 3

a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307

b) Cho đa thức f(x)=\(a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)

Biết rằng : f(x)=f(-1);f(2)=f(-2)

Chứng minh : f(x)=f(-x) với mọi x

Cho 4 số không âm a, b, c, d thỏa mãn a+b+c+d=1. Gọi S là tổng các giá trị tuyệt đối của hiệu từng cặp số có được từ 4 số này. S có thể đạt được giá trị lớn nhất bằng bao nhiêu?

Bài 4 

Cho tam giác ABC (ab>ac), m là trung điểm của bc. Đường thẳng đi qua m vuông góc với tia phân giác của góc a tại h cắt cạnh ab, ac lần lượt tại e và f. Chứng minh

a) 2BME=ACB-B( Đây là các góc)

b) \(\frac{FE^2}{4}+AH^2=AE^2\)

c) BE=CF

1
5 tháng 2 2020

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{121}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{120}{121}\)

\(-A=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot10\cdot12}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot11\cdot11}\)

\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot...\cdot11\right)\left(2\cdot3\cdot4\cdot...\cdot11\right)}\)

\(-A=\frac{1\cdot12}{11\cdot2}=\frac{6}{11}\)

\(A=-\frac{6}{11}\)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)

\(B=1-\frac{1}{38}=\frac{37}{38}\)