Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy tắc chia hết cơ bản: với các số nguyên dương ta luôn có \(a^n-b^n\) chia hết \(a-b\)
Do đó \(199^x-2^x⋮197\)
\(\Rightarrow p^y⋮197\Rightarrow p⋮197\) (do 197 là số nguyên tố)
\(\Rightarrow p=197\)
Pt trở thành: \(199^x-2^x=197^y\)
- Với \(x=1\Rightarrow y=1\)
- Với \(x=2\Rightarrow199^2-2^2=197.201\) chia hết 201, trong khi \(197^y\) ko chia hết cho 201 (ktm)
- Với \(x\ge3\) \(\Rightarrow2^x⋮8\)
TH1: Nếu x lẻ \(\Rightarrow\)\(199^x\equiv-1\left(mod8\right)\Rightarrow199^x-2^x\equiv-1\left(mod8\right)\)
+ \(y\) chẵn \(\Rightarrow197^y\equiv5^y\left(mod8\right)\equiv5^{2k}\left(mod8\right)\equiv25^k\left(mod8\right)\equiv1\left(mod8\right)\) (ktm)
+ \(y\) lẻ \(\Rightarrow197^y\equiv5^{2k+1}\left(mod8\right)\equiv5.25^k\left(mod8\right)\equiv5\) (mod8) (ktm)
TH2:\(x\) chẵn \(\Rightarrow199^x\equiv1\left(mod8\right)\Rightarrow199^x-2^x\equiv1\left(mod8\right)\)
+ \(y\) lẻ \(\Rightarrow\) tương tự TH1 ta có \(197^y\equiv5\left(mod8\right)\) (ktm)
\(\Rightarrow y\) chẵn
Khi x;y cùng chẵn, ta có \(199^x\equiv1\left(mod3\right)\) và \(2^x\equiv1\left(mod3\right)\)
\(\Rightarrow199^x-2^x⋮3\Rightarrow197^y⋮3\) (vô lý)
Vậy với \(x\ge3\) ko tồn tại bộ số nguyên dương nào thỏa mãn
Hay có đúng 1 bộ số thỏa mãn yêu cầu: \(\left(x;y;p\right)=\left(1;1;197\right)\)
Vì là số hữu tỉ nên \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{a}{b}\left(a;b\inℕ^∗\right)\)
\(\Leftrightarrow bx+by\sqrt{2013}=ay+az\sqrt{2013}\)
\(\Leftrightarrow az\sqrt{2013}-by\sqrt{2013}=bx-ay\)
\(\Leftrightarrow\sqrt{2013}\left(az-by\right)=bx-ay\)
Vì VP là số hữu tỉ nên VT là số hữu tỉ
Mà \(\sqrt{2013}\)là số vô tỉ
Nên \(bx-ay=az-by=0\)
\(\Rightarrow\hept{\begin{cases}bx=ay\\az=by\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{a}{b}\\\frac{y}{z}=\frac{a}{b}\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
Ta có \(x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z\right)^2-y^2=\left(x-y+z\right)\left(x+y+z\right)\)
Mà \(x^2+y^2+z^2\)là số nguyên tố nên
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)(Do \(x-y+z< x+y+z\))
Vì x ; y ; z nguyên dương nên \(x;y;z\ge1\Rightarrow\hept{\begin{cases}x^2\ge x\\y^2\ge y\\z^2\ge z\end{cases}}\)
\(\Rightarrow x^2+y^2+z^2\ge x+y+z\)
Dấu "=" xảy ra <=> x = y = z = 1 (thỏa mãn)
Theo đề ra ta có: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{m}{n}\left(m,n\in Z;\left(m,n\right)=1\right).\)
\(\Rightarrow nx+ny\sqrt{2013}=my+mz\sqrt{2013}\Leftrightarrow nx-my=\sqrt{2013}\left(mz-ny\right).\)
\(\Rightarrow\hept{\begin{cases}nx-my=0\\mz-ny=0\end{cases}}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2\)(vì x,y,n,m đều là các số nguyên )
Khi đó: \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
Dễ thấy \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên:
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)
Thử lại ta thấy x=y=z=1 thỏa mãn .
Ta có: \(\frac{x-y\sqrt{2021}}{y-z\sqrt{2021}}=\frac{m}{n}\inℚ\left(m,n\inℤ,n\ne0\right)\Rightarrow nx-ny\sqrt{2021}=my-mz\sqrt{2021}\)\(\Rightarrow nx-my=\left(ny-mz\right)\sqrt{2021}\)
Vì x, y, z, m, n là các số nguyên nên \(nx-my\inℤ\)và \(ny-mz\inℤ\)
Khi đó: \(nx-my=0\)và \(ny-mz=0\)suy ra \(\frac{m}{n}=\frac{y}{z}=\frac{x}{y}\Rightarrow y^2=xz\)
Theo đề bài thì \(x^2+y^2+z^2\)là số nguyên tố hay \(x^2+2y^2+z^2-y^2=x^2+2zx+z^2-y^2=\left(x+z\right)^2-y^2=\left(x+y+z\right)\left(x+z-y\right)\)là số nguyên tố
Khi đó \(x+z-y=1\Leftrightarrow x+z=1+y\)
\(\Rightarrow x^2+z^2+2y^2=y^2+2y+1\Leftrightarrow\left(y-1\right)^2+x^2+z^2-2=0\)
Vì x, y, z là số nguyên dương nên x = y = z = 1
Để cho gọn, đặt {x2=ay2=b
(a+4b+28)2−17a2−17b2=238b+833
\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833
\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0
\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0
\(\Leftrightarrow\)(2x−y)(2x+y)=7
Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương
\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3
Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)
#Shinobu Cừu