Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, De A nguyen
\(\Rightarrow\)7n+5 chia het cho 2n+4
\(\Rightarrow\)14n+10 chia het cho 2n+4
\(\Rightarrow\)14n+28-38 chia het cho 2n+4
\(\Rightarrow\) 38 chia hết cho 2n+4 \(\Rightarrow\)  2n+4\(\in\) U(38)
Vì 2n+4 là số chẵn nên 2n+4\(\in\){-38;-2;2;38}
\(\Rightarrow\)n\(\in\){-21;-3;-1;17}
Vay de A nguyen thi n\(\in\){-21;-3;-1;17}
n thuộc { -18;-9;-6;-3;-2;-1;1;2;3;6;9;18} , mk nghĩ thế ko bt có đúng ko !!!
Ta có: \(\frac{6n+5}{2n-1}=\frac{\left(6n-3\right)+8}{2n-1}=\frac{6n-3}{2n-1}+\frac{8}{2n-1}=2+\frac{8}{2n-1}\)
Để A có giá trị nguyên thì 8/2n-1 cũng phải là số nguyên
\(\Rightarrow2n-1\in\text{Ư}\left(8\right)\)
\(\Rightarrow\) \(2n-1\in\) {-8;-4;-2;-1;1;2;4;8}
Mà 2n - 1 lẻ nên 2n - 1 \(\in\) {-1;1}
\(\Rightarrow\) n \(\in\) {0;1}
Để: \(\frac{2n-5}{n}\) có giá trị nguyên thì 2n - 5 \(⋮\)n
Vì 2n \(⋮\)n
nên 5 \(⋮\)n
=> n là ước của 5 mà n là số nguyên âm
=> n = - 1 hoặc n = - 5 thử lại cả 2 đều thỏa mãn
Vậy n = - 1; n = - 5
Đặt \(A=\frac{2n-5}{n}\)
\(\Rightarrow A=\frac{2n}{n}-\frac{5}{n}=2-\frac{5}{n}\)
Vì \(2\inℤ\)\(\Rightarrow\)Để A có giá trị nguyên thì \(5⋮n\)
\(\Rightarrow n\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Vậy \(n\in\left\{\pm1;\pm5\right\}\)
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
a) \(A=\frac{4}{n-3}\)
Để A nguyên => \(\frac{4}{n-3}\)nguyên
=> \(4⋮n-3\)
=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy n thuộc các giá trị trên
b) \(B=\frac{2n-1}{n+5}=\frac{2\left(n+5\right)-11}{n+5}=2-\frac{11}{n+5}\)
Để B nguyên => \(\frac{11}{n+5}\)nguyên
=> \(11⋮n+5\)
=> \(n+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n+5 | 1 | -1 | 11 | -11 |
n | -4 | -6 | 6 | -16 |
Vậy n thuộc các giá trị trên