\(a+b+c=a^3+b^3+c^3-3abc=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2022

\(a+b+c=a^3+b^3+c^3-3abc\)

\(\Leftrightarrow a+b+c=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=1\) (do \(a+b+c=1\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2\) (1)

Mặt khác:

\(a+b+c=1\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=1\) (2)

Cộng vế (1) và (2):

\(\Rightarrow a^2+b^2+c^2=1\)

\(\Rightarrow\left(a;b;c\right)=\left(1;0;0\right)\) và các bộ hoán vị của chúng

15 tháng 7 2022

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Mà \(a+b+c=1\)

\(\Rightarrow a^3+b^3+c^3-3abc=a^2+b^2+c^2-ab-bc-ca\)\(=1\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-a\right)^2+\left(a-c\right)^2=2\)

Vì a, b, c nguyên nên: \(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=1\\\left(c-a\right)^2=1\end{matrix}\right.\) và các hoán vị của nó

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\\left[{}\begin{matrix}b-c=1\\b-c=-1\end{matrix}\right.\\\left[{}\begin{matrix}c-a=1\\c-a=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\\left[{}\begin{matrix}b=1+c\\b=-1+c\end{matrix}\right.\\\left[{}\begin{matrix}c=1+a\\c=-1+a\end{matrix}\right.\end{matrix}\right.\)

Thay vô \(a+b+c=1\) để tìm a, b, c

(Chú ý lúc kết luận, ghi các nghiệm vừa tìm được và viết thêm cụm "và các hoán vị của nó")

5 tháng 12 2019

\(\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2\)

\(\ge a^4+b^4+c^4+a^2b^2-2abc^2\)

\(=\left(a^2+b^2+c^2\right)\left(a^4+b^4+\left(c^2-ab\right)^2\right)\)

\(\ge\left(a^3+b^3+c\left(c^2-ab\right)\right)^2\)

\(=\left(a^3+b^3+c^3-abc\right)^2\ge\left(a^3+b^3+c^3-3abc\right)^2=1\)

\(\Rightarrow B\ge1\)

13 tháng 7 2020

Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)

Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\)\(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)

Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)

Đẳng thức xảy ra khi a = b = c = 1