Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:
\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)
\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)
\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)
\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB
c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB
b)
A. x-y+2=0
B. x+2y=0
C.2x-2y+10=0
D. x-y+100=0
c)
A. x-3y+4=0
B. -x+y+10=0
C. x+y=0
D. 5x-y+1=0
Từ pt trên suy ra \(y=x+1\) thay xuông dưới:
\(\left(m-1\right)x^2+\left(x+1\right)^2+x-2\left(x+1\right)+2m-3=0\)
\(\Leftrightarrow mx^2+x+2m-4=0\)
Đặt \(f\left(x\right)=mx^2+x+2m-4=0\)
Để phương trình có 2 nghiệm thỏa mãn \(x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\left(2m-4\right)>0\\a.f\left(2\right)=m\left(4m+2+2m-4\right)>0\\\frac{x_1+x_2}{2}=\frac{-1}{2m}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-8m^2+16m+1>0\\m\left(6m-2\right)>0\\\frac{4m+1}{2m}>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{3}< m< \frac{4+3\sqrt{2}}{4}\)
Bài 2:
Tọa độ giao điểm của Δ1 và Δ2 là:
\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)
Thay x=5/9 và y=26/9 vào Δ3, ta được:
\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)
=>5/9m=-20/3
hay m=-12
Lời giải:
Ta có: \(\overrightarrow{u_d}=(-2,1)\Rightarrow \overrightarrow{n_d}=(1,2)\)
Xét $(d)$: \(\left\{\begin{matrix} x=1-2t\\ y=2+t\end{matrix}\right.\Rightarrow x+2y=5\) (đây chính là pt tổng quát của $(d)$)
$I=(d)\cap (d_1)$ nên: \(\left\{\begin{matrix} x_I+2y_I=5\\ x_I+y_I-3=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_I=1\\ y_I=2\end{matrix}\right.\)
$M\in Ox$ nên gọi tọa độ của $M$ là $(a,0)$
$MI=\sqrt{(a-1)^2+(0-2)^2}=3$
$\Rightarrow (a-1)^2=5$
$\Rightarrow a=1\pm \sqrt{5}$
Vậy tọa độ $M$ là $(1\pm \sqrt{5}, 0)$
Bạn tham khảo:
Câu hỏi của Lê Ngọc Cương - Toán lớp 9 | Học trực tuyến
Chuyển pt d về dạng tổng quát: \(3x+y-7=0\)
Thay tọa độ điểm A vào: \(\Rightarrow3.1+2-7=-1< 0\)
Thay tọa độ điểm B vào, để 2 điểm nằm cùng phía so với d thì:
\(-6+m-7< 0\Rightarrow m< 13\)