K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Đặt \(n^2-14n-256=a^2\)

\(\Leftrightarrow\left(n^2-14n+49\right)-a^2=305\)

\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)

\(\Leftrightarrow\left(n-7+a\right)\left(n-7-a\right)=305=5\cdot61\)

Đến đây làm nốt đi.

27 tháng 11 2019

Đặt \(G=n^2-14n-256=a^2\)(là số chính phương)

\(\Leftrightarrow n^2-14n+49-305=a^2\)

\(\Leftrightarrow\left(n-7\right)^2-305=a^2\)

\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)

\(\Leftrightarrow\left(n+a-7\right)\left(n-a-7\right)=305=5.61\)

Mà \(n+a-7\ge n-a-7\)nên \(\hept{\begin{cases}n+a-7=61\\n-a-7=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n+a=68\\n-a=12\end{cases}}\Leftrightarrow n=\frac{68+12}{2}=40\)

Vậy n = 40 thì \(G=n^2-14n-256\)là số chính phương

9 tháng 3 2022

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.

 

13 tháng 3 2017

AI KẾT BN KO!

TIỆN THỂ TK MÌNH LUÔN NHA!

KONOSUBA!!!

AI TK MÌNH MÌNH TK LẠI 3 LẦN.

26 tháng 9 2017

kết bạn ko

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
21 tháng 7 2019

Để S là số chính phương

\(\Rightarrow2^n+1=k^2\Rightarrow2^n=k^2-1=\left(k-1\right).\left(k+1\right)\)

\(\text{Vì }2^n\text{ chẵn }\Rightarrow\left(k-1\right).\left(k+1\right)\text{ chẵn }\)=> k-1 và k+1 là 2 số chẵn liên tiếp. 

Dễ thấy 2n =2.2..2 ( n chữ số 2)

Mà k-1 và k+1 là tích của 2 số chẵn liên tiếp (hơn kém nhau 2 đơn vị) => k-1=2 và k+1=4 <=> k=3

=> 2n+1=32=9 => 2n=8 <=> n=3

Vậy n=3

21 tháng 7 2019

sửa dòng 2:=>  Đặt 2n+1=k2

27 tháng 4 2018

bạn thi hsg ak bài nay dễ mak

có 4m^2+m=5n^2+n

<=>m-n+5m^2-5n^2=m^2

<=>(m-n)(5m+5n+1)=m^2         (1)

gọi ƯCLN(m-n;5m+5n+1)=d ta c/m d=1

có m-n chia hết d; m,n là các số tự nhiên

<=>5m-5n chia hết d

và có 5m+5n+1 chia hết d

=>10m+1 chia hết d                          (2)

(1)=> m^2 chia hết cho d 

=>m chia hết d (m là số tự nhiên)

=>10m chia hết cho d                        (3)

từ (2),(3)=>1 chia hết cho d

=>d =1                                              (4)

từ (1),(4)=>đpcm.

bài này phải áp dụng kiến thức lớp 6 vào .

27 tháng 4 2018

mik nhầm chút

(1)=> m^2 chia hết d^2

28 tháng 10 2015

4m+ m = 5n+ n <=> (5m2 - 5n2) + (m - n) = m<=> 5.(m - n).(m + n) + (m - n) = m2

<=> (m - n).(5m + 5n + 1) = m2  (1)

Gọi d = ƯCLN (m- n; 5m + 5n + 1) 

=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d

=> m= (m - n).(5m + 5n + 1) chia hết cho d2

=> m chia hết cho d

lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d

10m chia hết cho d nên 1 chia hết cho d 

=> m - n và 5m + 5n + 1 nguyên tố cùng nhau    (2)

Từ (1)(2) => m - n; 5m + 5n + 1 đều là số chính phương

Ta có:

4m+ m

= 5n+ n

<=> (5m- 5n2) + (m - n) = m

<=> 5.(m - n).(m + n) + (m - n) = m2

<=> (m - n).(5m + 5n + 1) = m2  (*)

Gọi d = ƯCLN (m- n; 5m + 5n + 1) 

=> m - n chia hết cho d và 5m + 5n+ 1 chia hết cho d

=> m= (m - n).(5m + 5n + 1) chia hết cho d2

=> m chia hết cho d

Ta lại có: 5.(m - n) + (5m + 5n + 1) = 10m + 1 chia hết cho d

10m chia hết cho d nên 1 chia hết cho d 

=> m - n và 5m + 5n + 1 nguyên tố cùng nhau    (**)

Từ (*)(**) => m - n; 5m + 5n + 1 đều là số chính phương

hok tốt