Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)Mk ko ghi lại đề đâu nha
\(Xet2TH:\left(+\right)n\ge2018\Rightarrow|n-2018|=n-2018\Rightarrow2018^m+4035=2n-2018\)
\(2n-2018\left(chẵn\right)\Rightarrow2018^mlẻ\Rightarrow m=0\Rightarrow2n-2018=4036\Rightarrow n=3027\)
\(\left(+\right)n< 2018\Rightarrow|n-2018|=2018-n\Rightarrow2018^m+4035=2018.Mà:2018^m\ge0\left(loại\right)\)
\(Vậy:m=0;n=3027\)
a) Ta có:
\(\left|x-2017\right|\ge0\) với \(\forall x\)
\(\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu
Vậy \(x;y\in\varnothing\)
b) Ta có:
\(3.\left|x-y\right|^5\ge0\)
\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)
\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)
Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)
\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)
\(2^x+3^x=5^x\)
\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x=1\)
+) Với x>1
\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\)(loại)
+) Với x=1
\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x=\frac{2}{5}+\frac{3}{5}=1\)(thỏa mãn)
+) Với x<1
\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)(loại)
Vậy x = 2
3A=32+3334+...+3100+3101
\(\Rightarrow\)3A-A=(32+33+34+...+3100+3101)-(3+32+33+34+...+3100)
\(\Rightarrow\)2A=3100-3\(\Rightarrow\)2A+3=3101
\(\Rightarrow\)n=101
\(A=3+3^2+...+3^{99}\)
\(\Rightarrow3A=3.\left(3+3^2+...+3^{99}\right)\)
\(\Rightarrow3A=3^2+3^3+...+3^{100}\)
\(\Rightarrow3A-A=3^2+3^3+...+3^{100}-3-3^2-...-3^{99}\)
\(\Rightarrow2A=3^{100}-3\)
Thay 2A = 3100 - 3 vào 2A + 3 = 3n, ta có:
\(3^{100}-3+3=3^n\)
\(\Rightarrow3^{100}=3^n\Rightarrow n=100\)
ai lam nhanh ma dung minh h cho
cac ban nho giai ho minh nhe