\(2^m\)+ 2017 = |n \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

a)  \(\Rightarrow32\ge2^n>4\)

\(\Rightarrow2^5\ge2^n>2^2\Rightarrow5\ge n>2\)

Mà vì \(n\in N\Rightarrow n=\left\{3;4;5\right\}\)

b) \(\Rightarrow3^2.3^3\le3^n< 3^5\)

\(\Rightarrow3^5\le3^n< 3^5\Rightarrow5\le n< 5\)

\(\Rightarrow n\in\)rỗng

14 tháng 12 2018

\(\)Mk ko ghi lại đề đâu nha

\(Xet2TH:\left(+\right)n\ge2018\Rightarrow|n-2018|=n-2018\Rightarrow2018^m+4035=2n-2018\)

\(2n-2018\left(chẵn\right)\Rightarrow2018^mlẻ\Rightarrow m=0\Rightarrow2n-2018=4036\Rightarrow n=3027\)

\(\left(+\right)n< 2018\Rightarrow|n-2018|=2018-n\Rightarrow2018^m+4035=2018.Mà:2018^m\ge0\left(loại\right)\)

\(Vậy:m=0;n=3027\)

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)

\(2^x+3^x=5^x\)

\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x=1\)

+) Với x>1 

\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\)(loại) 

+) Với x=1 

\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x=\frac{2}{5}+\frac{3}{5}=1\)(thỏa mãn) 

+) Với x<1 

\(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)(loại) 

Vậy x = 2

3 tháng 1 2018

x=1 chứ bạn

18 tháng 10 2017

3A=32+3334+...+3100+3101

\(\Rightarrow\)3A-A=(32+33+34+...+3100+3101)-(3+32+33+34+...+3100)

\(\Rightarrow\)2A=3100-3\(\Rightarrow\)2A+3=3101

\(\Rightarrow\)n=101

18 tháng 10 2017

\(A=3+3^2+...+3^{99}\)

\(\Rightarrow3A=3.\left(3+3^2+...+3^{99}\right)\)

\(\Rightarrow3A=3^2+3^3+...+3^{100}\)

\(\Rightarrow3A-A=3^2+3^3+...+3^{100}-3-3^2-...-3^{99}\)

\(\Rightarrow2A=3^{100}-3\)

Thay 2A = 3100 - 3 vào 2A + 3 = 3n, ta có:

\(3^{100}-3+3=3^n\)

\(\Rightarrow3^{100}=3^n\Rightarrow n=100\)

9 tháng 3 2019

ai lam nhanh ma dung minh h cho 

cac ban nho giai ho minh nhe

9 tháng 3 2019

\(\frac{2018}{\sqrt{2017}}+\frac{2017}{\sqrt{2018}}=\frac{2017}{\sqrt{2017}}+\frac{2018}{\sqrt{2018}}+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)

\(\frac{1}{\sqrt{2017}}>\frac{1}{2018}\Rightarrow VT>\sqrt{2017}+\sqrt{2018}\)