\(2^m+2015=\left|n-2016\right|+n-2016\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\) 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

10 tháng 4 2017

2m + 2015 = |n - 2016| + n - 2016

=> Ta có 2 trường hợp:

+/ 2m + 2015 = (n - 2016) + n - 2016

=> 2m + 2015 = n - 2016 + n - 2016

=> 2m + 2015 = 2n - 4032 (1)

Ta có 2n là số chẵn, -4032 cũng là số chẵn (2)

Từ (1)(2) => 2m + 2015 là số chẵn

Mà 2015 là số lẻ nên 2m là số lẻ => m = 0

Thay m = 0 vào biểu thức 2m + 2015 = 2n - 4032, ta có:

20 + 2015 = 2n - 4032

=> 1 + 2015 = 2n - 4032

=> 1 + 2015 + 4032 = 2n

=> 6048 = 2n

=> 3024 = n hay n = 3024

+/ 2m + 2015 = -(n - 2016) + n - 2016

=> 2m + 2015 = -n + 2016 + n - 2016

=> 2m + 2015 = 0

=> 2m = -2015

\(\Rightarrow2^m\notin\varnothing\Rightarrow m\notin\varnothing\)

Vậy m = 0 và n = 3024

10 tháng 4 2017

Ta thấy /n-2016/ + n - 2016 là số chẵn => 2^m + 2015 là số chẵn mà 2015 là số lẻ => 2^m lẻ=> m = 0

=> 2016= /n-2016/+n-2016

tới dây bn tự làm nhé

27 tháng 12 2019

TH1: \(n-2016\ge0\)\(\Rightarrow n\ge2016\Rightarrow\left|n-2016\right|=n-2016\)

Khi đó, phương trình đã cho trở thành: \(2^m+2015=2\left(n-2016\right)\)(1)

Vì VT chẵn nên VP chẵn. Mà 2015 lẻ nên \(2^m\)phải lẻ\(\Rightarrow m=0\)

Thay m=0 vào (1), ta được: \(1+2015=2\left(n-2016\right)\Rightarrow n-2016=1008\Rightarrow n=3024\)(TM)

TH2: \(n-2016< 0\Rightarrow n< 2016\Rightarrow\left|n-2016\right|=-\left(n-2016\right)\)

Khi đó, phương trình đã cho trở thành: \(2^m+2015=0\Rightarrow2^m=-2015\)(vô lý)

Vậy \(\left(m;n\right)=\left(0;3024\right)\)

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

16 tháng 3 2017

giả sử /x/ + x

TH1: x>0 => /x/+x=x+x=2x

TH2: x< hoặc =0 => /x/+x=0

=> /x/+x chẵn

=> /n-2016/ + n-2016 chẵn

=> 2^m +2015 chẵn

Mà 2015 lẻ => 2^m lẻ => m=0

thay vào .............

n=3024

m=0

22 tháng 3 2017

dễ mà

10 tháng 2 2018

Giả sử |x|+x

  • x>0 => |x|+x=x|x=2x
  • x< hoặc bằng 0 => |x|+x=0

=> |x|+x chẵn

=> |n-2016|+2016 chẵn

=> 2m+2015 chẵn

Mà 2015 lẻ => 2m lẻ => m=0

Thay vào ta có: 

m=3024

n=0