\(\left(x+4\right)^5+\left(2x-5\right)^5+\left(1-3x\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời :

x = -4

x = \(\frac{1}{3}\)

x = \(\frac{5}{2}\)

x = \(-\frac{13\sqrt{3}i-9}{14}\)

x = \(\frac{13\sqrt{3}i+9}{14}\)

20 tháng 8 2021

(x+4)5+(2x-5)5+(1-3x)5=0

(x+4)5+(2x-5)5-(3x-1)5=0

(x+4)5+(2x-5)5=(3x-1)5

ta có:(x+4)5+(2x-5)5>=(x+4+2x-5)5=(3x-1)5

dấu ''='' xảy ra khi và chỉ khi (hay (x+4)5+(2x-5)5=(3x-1)5 )

(x+4)5=0 suy ra x+4=0 suy ra x=-4

(2x-5)5=0 suy ra 2x-5=0 suy ra x=5/2

vậy x=-4 và x=5/2 thì (x+4)5+(2x-5)5+(1-3x)5=0

1: =>2x-5=4 hoặc 2x-5=-4

=>2x=9 hoặc 2x=1

=>x=9/2hoặc x=1/2

2: \(\Leftrightarrow\left|2x+1\right|=\dfrac{3}{4}-\dfrac{7}{8}=\dfrac{-1}{8}\)(vô lý)

3: \(\Leftrightarrow\left|5x-3\right|=x+5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(5x-3-x-5\right)\left(5x-3+x+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(4x-8\right)\left(6x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;-\dfrac{1}{3}\right\}\)

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

8 tháng 2 2018

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow9x+18-3x-6=0\)

\(\Leftrightarrow6x+12=0\)

\(\Leftrightarrow x=-2\)

e. \(\left(2x-1\right)^2-45=0\)

\(\Leftrightarrow4x^2-2x+1-45=0\)

\(\Leftrightarrow4x^2-2x-44=0\)

Đến đó tự giải tiếp nha!

c. \(2\left(2x-5\right)-3x=0\)

\(\Leftrightarrow4x-10-3x=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

g. \(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 2 2018

sao làm nhung cau de the

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

giúp mk với tứ tư mk phải nộp rùi bài 1: a, \(2x\left(3x^2-5x+3\right)\) b, \(-2x\left(x^2+5x-3\right)\) c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\) bài 2: a,\(\left(2x-1\right).\left(x^2-5-4\right)\) b,\(-\left(5x-4\right).\left(2x+3\right)\) c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\) d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\) e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\) bài 3: c/m rằng gtri của...
Đọc tiếp

giúp mk với tứ tư mk phải nộp rùi

bài 1:

a, \(2x\left(3x^2-5x+3\right)\)

b, \(-2x\left(x^2+5x-3\right)\)

c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\)

bài 2:

a,\(\left(2x-1\right).\left(x^2-5-4\right)\)

b,\(-\left(5x-4\right).\left(2x+3\right)\)

c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\)

d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\)

e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\)

bài 3:

c/m rằng gtri của biểu thức ko phụ thuộc vào gtri của biến

a,\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)

b,\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)

bài 4 :tìm x biết

a, \(3x+2\left(5-x\right)=0\)

b,\(x\left(2x-1\right).\left(x+5\right)-\left(2x^2+1\right).\left(x+4,5\right)=3,5\)

c,\(3x^2-3x\left(x-2\right)=36\)

d,\(\left(3x^2-x+1\right).\left(x-1\right)+x^2.\left(4-3x\right)=\dfrac{5}{2}\)

4
11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

29 tháng 6 2018

1) 3(x - 1)2 - 3x(x - 5) = 1

⇒ 3(x2 - 2x + 1) - 3x2 + 15x = 1

⇒ 3x2 - 6x + 3 - 3x2 + 15x = 1

⇒ 9x = 1 - 3

⇒ 9x = -2

⇒ x = \(\dfrac{-2}{9}\)

2) (6x2)2+(5x2)24(3x1)(5x2)=0

⇒ (6x - 2)2 + (5x - 2)2 -4(6x - 2)(5x - 2) = 0

⇒ (6x - 2)2 -2(6x - 2)(5x - 2) + (5x - 2)2 -2(6x - 2)(5x - 2) = 0

⇒ (6x - 2)(6x - 2 - 5x +2) + (5x - 2)(5x - 2 - 6x + 2) = 0

⇒ x(6x - 2) - x(5x - 2) = 0

⇒ x(6x - 2 - 5x +2) = 0

⇒ xx = 0

⇒ x = 0

Còn mấy cái sau mình trả lời sau nha hiuhiu

30 tháng 6 2018

Còn hai câu sau nữa nè :)

3) (2x - 5)(2x + 5) - 1 = 0

⇒ 4x2 - 25 - 1 = 0

⇒ 4x2 = 26

⇒ x2 = \(\dfrac{13}{2}\)

⇒ x = \(\sqrt{\dfrac{13}{2}}\) hoặc x = -\(\sqrt{\dfrac{13}{2}}\)

4) 5x2 - 20 = 0

⇒ 5x2 = 20

⇒ x2 = 4

⇒ x = 2 hoặc x = -2

25 tháng 11 2019

b. (x2-0,5):2x-(3x-1)2:(3x-1)=0

<=> \(\frac{1}{2}\)x-0,25-3x+1=0

<=>\(-\frac{5}{2}\)x+0,75=0

<=> \(-\frac{5}{2}\)x=-0,75

<=> x=0,3

chúc bạn học tốt

25 tháng 11 2019

\(a.\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=4\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=4\)

\(\Leftrightarrow\left(x^2+x+5x+5\right)\left(x^2+4x+2x+8\right)=4\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=4\)

\(\text{Đặt a = }x^2+6x+5\text{ }\Rightarrow\text{ }a+3=x^2+6x+8\)

\(\Leftrightarrow a\left(a+3\right)=4\)

\(\Leftrightarrow a^2+3a-4=0\)

\(\Leftrightarrow a^2+4a-a-4=0\)

\(\Leftrightarrow a\left(a+4\right)-\left(a+4\right)=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x^2+6x+9\right)-5\right]=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x+3\right)^2-5\right]=0\)

\(\text{Hoặc }\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

\(\text{Hoặc }\left(x+3\right)^2-5=0\Leftrightarrow\left(x+3\right)^2=5\Leftrightarrow\hept{\begin{cases}x+3=\sqrt{5}\\x+3=-\sqrt{5}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{cases}}}\)

\(\text{Vậy }x\in\left\{-3;\sqrt{5}-3;-\sqrt{5}-3\right\}\)