Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 7m+n là số nguyên tố, mà 7m+n>2 thì m,n không cùng tính chẵn lẻ
=> m,n có một số bằng 2
+ Nếu m=2. Ta có:\(\hept{\begin{cases}n+14\\2n+11\end{cases}}\)đều là số nguyên tố
Thấy n=3 thỏa. Xét n=3k+1
=>n+14=3k+15=3(k+5) là hợp số.
Tương tự với 2n+11
+ Nếu n=2.
Hoàn toàn tương tự trường hợp trên.
Kết quả: (m;n)=(2;3),(3;2) thỏa mãn đề bài.
Bạn có thể làm rõ ràng hơn không ? Mình đọc hơi khó hiểu.
Tương tự với 2n + 11 là như thế nào?
Thay hướng dẫn tiếp phần b nhé:
Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)
Suy ra: p2 + q2 + r2 chia hết cho 3 mà p2 + q2 + r2 >3 suy ra p2 + q2 + r2 là hợp số ( mâu thuẫn đề bài).
Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3
Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3
Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7
Vậy (p;q;r) = (3;5;7) và các hoán vị
b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1
Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )
Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )
Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2
Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn
Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3
mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.
Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7
Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )
Vậy 3 số nguyên tố cần tìm là 3 5 7
Nguyễn Vân Huyền đã chọn câu trả lời này
Giờ tạm biết là (m;n)={(2;3);(3;2)} đã. mk sẽ giải chi tiết cho bn sau. Còn giờ mk chỉ gợi ý cách làm thôi nhé?
Cách làm:
Thử từng giá trị với m=2;3;n=2;3 ta tìm đk hai giá trị như trên.
Dùng đồng dư thức(mod) để chứng minh với mọi n và m>3 thì 4m+n hoặc mn+11 là hợp số.
Xong kết luận kết quả như trên
Xong!!!!!!!!!!!!!!!!
Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2
Nếu p = 2
=> 7p + q = 7.2 + q = 14 + q
q sẽ có 3 dạng là : 3k ; 3k+1;3k+2
Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố
q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố
q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố
Vậy q = 3 ; p = 2
VÀ TH q = 2 bn tự xét nha
p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.
p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )
Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2
https://olm.vn/hoi-dap/detail/1334571579.html