K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1: p=3

p^2+80=9+80=89 là số nguyên tố

TH2: p=3k+1

p^2+80=(3k+1)^2+80=9k^2+6k+1+80

=9k^2+6k+81=3(3k^2+2k+27) chia hết cho 3

=>Loại

TH3: p=3k+2

p^2+80=(3k+2)^2+80

=9k^2+12k+4+80

=9k^2+12k+84

=3(3k^2+4k+28) chia hết cho 3

18 tháng 4 2020

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

14 tháng 2 2016

 

p>3 thì p^2+2^p=(p^2-1)+(2^p+1) p^2 là số chính phương nên chia 3 dư 1 -> p^2-1 chia hết cho 3 (2^p+1) chia hết cho 3 vì p là số lẻ xong rồi, suy ra p^2+2^p chia hết cho 3 ko là snt ko thõa.  Xét p=3 thõa mãn

11 tháng 12 2016

p là số nguyên tố 

xét p=2 loại tự làm 

xét p=3 chọn tự làm

xét p=3k+1 hoặc p= 3k+2

p=3k+1=> p^2+8= (3k+1)^2+8= 9k^2+6k+9 chia hết cho 3

p=3k+2=> p^2+8= (3k+2)^2+8= 9k^2+12k+12 chia hết cho 3

nên từ đó suy ra p=3 là thoả đề

28 tháng 11 2016

(+) Với p = 2

=> a = 22 + 8 = 14 ( hợp số )
(+) Với p = 3

=> a = 32+8 = 17 ( số nguên tố )

(+) Với p > 3

Vì p nguyên tố

=> p = 3k+1 ; p = 3k + 2\(\left(k\in N\right)\)

Mặt khác : p2 là số chính phương . Mà p không chia hết cho 3

=> p2 chia 3 dư 1

=> p2=3m+1\(\left(m\in N\right)\)

=> p2+8=3m+1+8=3m+9 ( hợp số )

Vậy p = 3

28 tháng 11 2016

Ta có:

Gía trị của PGía trị của a khi thay P (a= P2+8)Kết quả nhận/loại
212Hợp số-> Loại
317Số nguyên tố-> Nhận
533Hợp số-> Loại
757Hợp số -> Loại
11129Hợp số-> Loại

 

Cứ thử như thế cho đến mãi ta mới chỉ nhận được một giá trị : P=3

=> Vậy: P=3

 

14 tháng 4 2021

Với p = 2 ta có p2 + 2p = 12 không là số nguyên tố

Với p = 2 ta có p2 + 2p = 17 là nguyên tố

Với  p > 3 ta có p2 + 2p = ( p2 - 1) + ( 2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 - 1 chia hết cho 3 và 2p + 1 chia hết cho 3 . Do đó p2 + 2p là hợp số

Vậy với p  3 thì p2 + 2p là số nguyên tố

Học vui vẻ ^_^

18 tháng 2 2023

+Với \(p=2\)  ta có: \(p+8=10\) là hợp số \(\Rightarrow\) không thỏa mãn \(p+10=12\)

+Với \(p=3\) ta có: \(p+8=11\)là số nguyên tố \(\Rightarrow\) thỏa mãn \(p+10=13\)

Với \(p>3\) do p là số nguyên tố \(\Rightarrow p=3k+1\) hoặc \(3k+2\)

Với \(p=3k+1\) thì \(p+8=3k+9\)              

Do \(3k+9\) chia hết cho 3 mà \(3k+9>3\rightarrow3k+9\) là hợp số \(\Rightarrow\) không thỏa mãn                                               \(p+10=3k+11\)

+Với \(p=3k+2\)  thì \(p+8=3k+10\)

                                \(p+10=3k+12\)    

Do \(3k+12\) chia hết cho \(3\) mà \(3k+12>3\rightarrow3k\) là hợp số ⇒ không thoả mãn

Vậy \(p=3\)

18 tháng 8 2021

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p2  là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

HT

p = 1

nha bạn 

chúc bạn học tốt nha