K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2

A = \(\frac{2n-9}{n-1}\) (đk n ≠ 1)

Gọi ước chung lớn nhất của (2n - 9) và (n - 1) là d

Khi đó ta có: \(\begin{cases}\left(2n-9\right)\vdots d\\ \left(n-1\right)\vdots d\end{cases}\)\(\begin{cases}\left(2n-9\right)\vdots d\\ 2\left(n-1\right)\vdots d\end{cases}\)

[2n - 9 -2 n + 2] ⋮ d

[(2n - 2n) - (9 - 2)] ⋮ d

7 ⋮ d

Nếu d = 7 thì phân số trên không phải là phân số tối giản.

Với d = 7 ta có: (n - 1) ⋮ d ⇒ n - 1 = 7k (k ∈ Z; k ≠ 0)

⇒ n = 7k + 1

Để phân số tối giản thì n ≠ 7 Vậy:

Phân số đã cho là tối giản khi và chỉ khi n có dạng:

n ≠ 7k + 1 (0 ≠ k ∈ Z)





16 tháng 2 2015

đề bài là 30n+1 thì mới làm được nếu là 30n+1 thì làm như sau 

gọi d thuộc ước chung  của 15n+1 và 30n+1 

suy ra 15n+1 chia hết cho d  

30n+1 chia hết cho d

vậy 2.(15n+1) chia hết cho d

30n+1 chia hết cho d 

suy ra 30n+2 chia hết cho d 

30n+1 chia hết cho d 

vậy(30n+2)-(30n+1) chi hết cho d 

1 chia hết cho d 

vậy d thuộc tập hợp 1 và -1

c/m 15n+1/30n+1 là phân số tối giản 

 

đè bài câu a sai ròi bạn ạ 

phải là 30n +1

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

22 tháng 3 2019

\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1

đúng k

kết bạn mình nha

21 tháng 7 2015

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

9 tháng 3 2018

giỏi lắm hoàng cảm ơn nhiều

2 tháng 4 2016

b)

goi D LA U(n+2/n-1)

=>n+2 chia het cho d=>n(n+2) chia het cho D

=>N-1 CHIA HET CHO D =N(N-1) .............

=>1 CHIA HET CHO D=>D=1

=>...........LA P/S TOI GIAN

2 tháng 4 2016

Ta có \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}\)

Mà \(\frac{n+2}{n-1}\) là phân số tối giản 

=> 3 chia hết n-1 =>3 và n-1 là ước chung của 3
Có 3 chia hết cho 1 và 3=> (n-1) không chia hết cho 2;3 và 6 => (n-1) không chia hết cho 2 và 3 => n-1 không chia hết cho 2 => n-1 khác 2p => n khác 2p +1. 
n-1 không chia hết cho 3 => n-1 khác 3q => n khác 3q +1( với p và q là số nguyên). 
Vậy với n khác 2p +1 và 3q +1 thì phân số đã cho là tối giản.