\(\frac{n^2-2n^2+3}{n-2}\)là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}\)=\(\frac{n^2-3}{n-2}\)=\(\frac{2^2-4+7}{n-2}\)=\(\frac{\left(n-2\right)^2+7}{n-2}\)=\(\frac{\left(n-2\right)^2}{n-2}\)+\(\frac{7}{n-2}\)=n-2+\(\frac{7}{n-2}\)

n-2 là số nguyên => \(\frac{7}{n-2}\)cũng là số nguyên =>n-2 thuộc Ư(7)={1;7;-1;-7}

=> n=3;9;1;-5

Đúng thì k cho mình

23 tháng 2 2017

\(\frac{n^2-2n^2+3}{n-2}=\frac{-n^2+3}{n-2}=\frac{-\left(n^2-2^2\right)-1}{n-2}=\frac{-\left(n-2\right)\left(n+2\right)}{n-2}-\frac{1}{n-2}=-\left(n+2\right)-\frac{1}{n-2}\)

         Để PT trên là số nguyên thì:\(1⋮\left(n-2\right)\)hay \(\left(n-2\right)\inƯ\left(1\right)\)

                           Ư(1) là:[1,-1]

Do đó ta được bảng sau:

                 

n-2-11
n13

                  Vậy để PT nguyên thì n=1;3

3 tháng 2 2018

a ) để F thuộc Z

=> \(\frac{n+10}{2n-8}\)thuộc Z

=> n + 10 \(⋮\)2n - 8

=> 2 . ( n + 10 ) \(⋮\)2n - 8

=> 2n + 20 \(⋮\)2n - 8

=> 2n - 8 + 28 \(⋮\)2n - 8 mà 2n - 8 \(⋮\)2n - 8 => 28 \(⋮\)2n - 8

=> 2n - 8 thuộc Ư ( 28 ) = { - 28 ; - 14 ; - 7 ; - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 ; 7 ; 14 ; 28 }

=> n thuộc { - 10 ; - 3 ; 2 ; 3 ; 5 ;6 ; 11 ; 18 }

17 tháng 8 2015

Ta có \(\frac{n^3-2n^2+3}{n-2}=\frac{n^2\left(n-2\right)}{n-2}+\frac{3}{n-2}=n^2+\frac{3}{n-2}\)

Để phân số trên là số nguyên thì \(\frac{3}{n-2}\)cũng là số nguyên

=>n-2 thuộc Ư(3)={-1;1;-3;3}

Ta có bảng sau:

n-2-11-33
n13-15

Vậy để \(\frac{n^3-2n^2+3}{n-2}\)là số nguyên thì n={1;-1;3;5}

8 tháng 5 2017

Gợi ý nè:

Bạn phân tích phân số \(\frac{n^3-2n^2+3}{n-2}\) ra....

Rồi lập bảng xem số nào thuộc giá trị của \(n\in Z\)

Kết quả nè:

\(n=1;-1;3;5\)

kết bạn mình nha

22 tháng 3 2019

\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1

đúng k

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên