K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

Điều kiện: x≥ -1/2 

Phương trình 

x 2 + m x + 2 = 2 x + 1 ⇔ 3 x 2 + 4 x - 1 = m x ( * )

  x= 0  không là nghiệm nên (*) 

⇔ m = 3 x 2 + 4 x - 1 x

xét  f ( x ) = 3 x 2 + 4 x - 1 x .

Ta có  đạo hàm 

f ' ( x ) = 3 x 2 + 1 x 2 > 0 ∀ x ⩾ - 1 2 ; x ≠ 0

Bảng biến thiên

iHNKwF43nin9.png

Từ bảng biến thiên ta có để phương trình có hai nghiệm thì m ≥ 9/2.

Chọn D.

NV
11 tháng 6 2019

Câu 1:

\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)

Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)

\(\Rightarrow a^2+a-5=m\) (1)

Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)

\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương

Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương

Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)

Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)

\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)

\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)

\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)

NV
11 tháng 6 2019

Câu 2:

\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)

Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)

\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)

\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)

Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)

\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)

\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)

\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)

\(\Rightarrow m\ge-\frac{3}{7}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng A. m = 0 B. m \(\le\) 0 C. m \(\in\left\{0;4\right\}\) D. m \(\ge\) 4 Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\) A. m \(\ge1\) B. \(m\le1\) C. \(0\le m\le1\) D. \(0\le m\le\frac{3}{4}\) Câu...
Đọc tiếp

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng

A. m = 0

B. m \(\le\) 0

C. m \(\in\left\{0;4\right\}\)

D. m \(\ge\) 4

Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\)

A. m \(\ge1\)

B. \(m\le1\)

C. \(0\le m\le1\)

D. \(0\le m\le\frac{3}{4}\)

Câu 3 : Tìm giá trị lớn nhất M của hàm số y = cos2x + 4cosx + 1

A. M = 5

B. M = 4

C. M = 6

D. M = 7

Câu 4 : Cho hàm số y = \(\frac{x}{x-1}\) . Mệnh đề nào sau đây là đúng ?

A. Hàm số đồng biến trên khoảng (0;1)

B. Hàm số đồng biến trên R \(|\left\{1\right\}\)

C. Hàm số nghịch biến trên \(\left(-\infty;1\right)\cup\left(1;+\infty\right)\)

D. Hàm số nghịch biến trên khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

Câu 5 : Cho hàm số y = \(\frac{\left(m-1\right)sinx-2}{sinx-m}\) . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0;\(\frac{\Pi}{2}\) )

A. \(m\in\left(-1;2\right)\)

B. m \(\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

C. m \(\in(-\infty;-1]\cup[2;+\infty)\)

D. m \(\in(-\infty;0]\cup[1;+\infty)\)

2
NV
16 tháng 10 2020

1.

Xét \(x^2-mx+m=0\) (1)

\(\Delta=m^2-4m\)

Hàm có đúng 1 tiệm cận đứng khi:

TH1: \(\Delta=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)

Th2: (1) có 1 nghiệm \(x=1\)

\(\Leftrightarrow1-m+m=0\left(ktm\right)\)

Vậy \(m\in\left\{0;4\right\}\)

2.

\(\Leftrightarrow m=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\)

Xét hàm \(f\left(x\right)=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\Rightarrow f'\left(x\right)=\frac{\left(1-x\right)\left(x+1\right)^2}{\left(x^2+1\right)^3}\ge0;\forall x\in\left[0;1\right]\)

Hàm đồng biến trên [0;1] \(\Rightarrow f\left(0\right)\le m\le f\left(1\right)\Leftrightarrow0\le m\le\frac{3}{4}\)

NV
16 tháng 10 2020

3.

\(y'=-2sin2x-4sinx=0\Leftrightarrow sinx=0\)

\(\Rightarrow x=k\pi\)

\(y\left(0\right)=6\) ; \(y\left(\pi\right)=-2\)

\(\Rightarrow M=6\)

4.

\(y'=\frac{-1}{\left(x-1\right)^2}< 0\Rightarrow\) hàm số nghịch biến trên các khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

5.

\(y'=\frac{-m\left(m-1\right)+2}{\left(sinx-m\right)^2}.cosx< 0\Leftrightarrow-m^2+m+2< 0\)

\(\Leftrightarrow m\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

18 tháng 10 2022

Chọn B

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Để hàm số đồng biến trên R thì:

\(y'=(m+2)x^2+2mx+1\geq 0\forall x\in\mathbb{R}\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi :

\(\left\{\begin{matrix} m+2> 0\\ \Delta'=m^2-m-2\leq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m> -2\\ (m+1)(m-2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> -2\\ -1\leq m\leq 2\end{matrix}\right.\)

\(\Leftrightarrow -1\leq m\leq 2\)

Đáp án B

11 tháng 4 2016

Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)

                                                   \(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)

Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có

\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)

Lập bảng biến thiên ta được 

\(f\left(0\right)=1;f\left(2\right)=-1\)

\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)

Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\) Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi...
Đọc tiếp

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là

A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\)

Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi đó giá trị a + 2b bằng

A. \(\frac{3}{2}\) B. \(\frac{4}{3}\) C. 1 D. \(\frac{2}{3}\)

Câu 3 : Có bao nhiêu giá trị nguyên dương của m để khoảng cách từ gốc tọa độ O đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y = \(x^3-3x+m\) nhỏ hơn hoặc bằng \(\sqrt{5}\)

A. 5 B. 2 C. 11 D. 4

Câu 4 : Gọi m là giá trị nhỏ nhất của hàm số y = \(x-1+\frac{4}{x-1}\) trên khoảng \(\left(1;+\infty\right)\) . Tìm m ?

A. m = 2 B. m = 5 C. m = 3 D. m = 4

Câu 5 : giá trị lớn nhất của hàm số \(y=\sqrt{-x^2+4x}\) trên khoảng (0;3) là :

A. 4 B. 2 C. 0 D. -2

Câu 6 : giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\sqrt{x-2}+\sqrt{4-x}\) lần lượt là M và m . Chọn câu trả lời đúng

A. M = 4 , m = 2 B. M = 2 , m = 0 C. M = 3 , m = 2 D. M = 2 , m = \(\sqrt{2}\)

4
NV
16 tháng 10 2020

1.

Hàm trùng phương có đúng 1 cực trị khi:

TH1: \(a=m=0\)

TH2: \(ab=-m>0\Leftrightarrow m< 0\)

\(\Rightarrow m\le0\)

Đáp án B

NV
16 tháng 10 2020

2.

\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)

Hàm số có 2 cực trị nằm về 2 phía trục hoành

\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)

\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)

\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)

NV
3 tháng 6 2019

Câu 1:

\(y'=\frac{\left(4x+1-m\right)\left(x-m\right)-\left(2x^2+\left(1-m\right)x+m+1\right)}{\left(x-m\right)^2}=\frac{2x^2-4mx+m^2-2m-1}{\left(x-m\right)^2}\)

Xét pt: \(f\left(x\right)=2x^2-4mx+m^2-2m-1=0\)

\(\Delta'=4m^2-2\left(m^2-2m-1\right)=2\left(m+1\right)^2\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m-\sqrt{2}\left(m+1\right)}{2}=\left(1-\frac{\sqrt{2}}{2}\right)m-\frac{\sqrt{2}}{2}\\x_2=\frac{2m+\sqrt{2}\left(m+1\right)}{2}=\left(1+\frac{\sqrt{2}}{2}\right)m+\frac{\sqrt{2}}{2}\end{matrix}\right.\)

ĐK1: để hàm số liên tục trên \(\left(1;+\infty\right)\) \(\Rightarrow m\le1\) (1)

ĐK2: \(x_2\le1\Rightarrow\left(1+\frac{\sqrt{2}}{2}\right)m+\frac{\sqrt{2}}{2}\le1\)

\(\Rightarrow\left(1+\frac{\sqrt{2}}{2}\right)m\le1-\frac{\sqrt{2}}{2}\Rightarrow m\le3-2\sqrt{2}\) (2)

Kết hợp (1) và (2) ta được \(m\le3-2\sqrt{2}\)

NV
3 tháng 6 2019

Câu 2:

\(y'=m-3+\left(2m+1\right)sinx\)

Để hàm số nghịch biến trên R \(\Leftrightarrow y'\le0\) \(\forall x\in R\)

\(\Rightarrow m-3+\left(2m+1\right)sinx\le0\)

\(\Leftrightarrow\left(2m+1\right)sinx\le3-m\)

TH1: \(2m+1=0\Rightarrow m=-\frac{1}{2}\Rightarrow0\le3+\frac{1}{2}=\frac{7}{2}\) (đúng)

TH2: \(2m+1< 0\Rightarrow m< -\frac{1}{2}\)

\(\left(2m+1\right)sinx\le3-m\Leftrightarrow sinx\ge\frac{3-m}{2m+1}\)

\(\Rightarrow\min\limits_{x\in R}sinx\ge\frac{3-m}{2m+1}\Rightarrow\frac{3-m}{2m+1}\le-1\)

\(\Leftrightarrow\frac{3-m}{2m+1}+1\le0\Leftrightarrow\frac{m+4}{2m+1}\le0\Rightarrow-4\le m< -\frac{1}{2}\)

TH3: \(2m+1>0\Rightarrow m>-\frac{1}{2}\)

\(\left(2m+1\right)sinx\le3-m\Rightarrow sinx\le\frac{3-m}{2m+1}\)

\(\Leftrightarrow\max\limits_{x\in R}\left(sinx\right)\le\frac{3-m}{2m+1}\Rightarrow\frac{3-m}{2m+1}\ge1\)

\(\Leftrightarrow\frac{2-3m}{2m+1}\ge0\Leftrightarrow-\frac{1}{2}< m\le\frac{2}{3}\)

Kết hợp lại ta được: \(-4\le m\le\frac{2}{3}\)

NM
2 tháng 6 2021

Xét 

\(y'=4x^3-4\left(m-1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=m-1\end{cases}}\)
TH1: 

\(m-1\le0\) thì hàm số đồng biến trên R

TH2: \(m-1>0\Rightarrow\orbr{\begin{cases}x=\sqrt{m-1}\\x=-\sqrt{m-1}\end{cases}}\)

Khi đó khoảng đồng biến của hàm số là \(\left(-\infty,-\sqrt{m-1}\right)\text{ và }\left(0,\sqrt{m-1}\right)\)

Muốn hàm số đồng biến trên (1,3) thì \(\left(1,3\right)\subset\left(0,\sqrt{m-1}\right)\Leftrightarrow3\le\sqrt{m-1}\Leftrightarrow m\ge10\)

Vậy \(\orbr{\begin{cases}m\le1\\m\ge10\end{cases}}\)

NV
21 tháng 7 2020

Đặt \(log_2\left(\frac{8x-2^x-12m}{3}\right)=t\)

\(\Rightarrow8x-2^x-12m=3.2^t\)

Ta được hệ: \(\left\{{}\begin{matrix}3t-2^x-x=3m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12t-4.2^x-4x=12m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)

\(\Rightarrow12t-3.2^x-12x+3.2^t=0\)

\(\Leftrightarrow3.2^t+12t=3.2^x+12x\)

Hàm \(f\left(a\right)=3.2^a+12a\) đồng biến trên R nên đẳng thức xảy ra khi và chỉ khi \(x=t\)

\(\Rightarrow3x-2^x-x=3m\)

\(\Leftrightarrow2x-2^x=3m\)

Khảo sát hàm \(f\left(x\right)=2x-2^x\Rightarrow f'\left(x\right)=2-2^x.ln2=0\)

\(\Rightarrow2^x=\frac{2}{ln2}\Rightarrow x=log_2\left(\frac{2}{ln2}\right)=1-log_2\left(ln2\right)\)

Từ BBT ta thấy để pt có đúng 2 nghiệm thực pb

\(\Leftrightarrow3m< f\left(1-log_2\left(ln2\right)\right)\Rightarrow m\le0\) do m nguyên

Có 20 giá trị nguyên của m