\(\left(2m^2-5m+2\right)\left(x-1\right)^{20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2021

Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết

Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.

NV
23 tháng 4 2020

Đặt \(f\left(x\right)=\left(2m^2-5m+2\right)\left(x+2\right)^{2019}\left(x^{2020}-4\right)+5x-1\)

Do \(f\left(x\right)\) là hàm đa thức nên liên tục và xác định trên R

Ta có: \(f\left(-2\right)=-11< 0\)

Lại có: \(4>1\Rightarrow\sqrt[2020]{4}>1\Rightarrow5\sqrt[2020]{4}>1\)

\(\Rightarrow f\left(\sqrt[2020]{4}\right)=5\sqrt[2020]{4}-1>0\)

\(\Rightarrow f\left(-2\right).f\left(\sqrt[2020]{4}\right)< 0;\forall m\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;\sqrt[2020]{4}\right)\) hay pt đã cho luôn luôn có nghiệm với mọi m

1. Tập giá trị của hs: y = sin2x + cos2x là? 2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\) 3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\) 4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\) 5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\) 6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\) 7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? ...
Đọc tiếp

1. Tập giá trị của hs: y = sin2x + cos2x là?

2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)

3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\)

4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\)

5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\)

6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\)

7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\) \(b.M\left(\frac{\pi}{2};1\right)\) \(c.M\left(\frac{-\pi}{4};0\right)\) d. M(1;1)

8. Nghiệm của pt: \(2sin^2x-3sinx+1=0\) thỏa đk: \(0\le x\le\frac{\pi}{2}\) là:

9. Cho pt: m(sinx+cosx)+sinx.cosx+1=0. Tìm m để pt có đúng 1 nghiệm thuộc: \(\left[\frac{-\pi}{2};0\right]\)

10. Giải pt: \(\sqrt{3}cos5x-sin5x=2cos3x\)

11. Tập giá trị của hs: y = cos2x + 4sinx - 2 là?

12. Pt: \(2cos^2x+5sinx=4\) có nghiệm âm lớn nhất =?

13. Tổng tất cả các nghiệm của pt: cos5x + cos2x + 2sin3x.sin2x = 0 trên đoạn: \(\left[0;2\pi\right]\) là?

14. Tìm m để pt: cos2x - (2m - 1)cosx - m + 1 = 0 có đúng 2 nghiệm thuộc: \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\) là?

15. Đồ thị hs: y = tanx - 2 đi qua? a. O(0;0) b.M\(\left(\frac{\pi}{4};-1\right)\) c. \(N\left(1;\frac{\pi}{4}\right)\) d. \(P\left(\frac{-\pi}{4};1\right)\)

6
NV
21 tháng 9 2020

6.

\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)

\(\Leftrightarrow cos4x=4cos2x+5\)

\(\Leftrightarrow2cos^22x-1=4cos2x+5\)

\(\Leftrightarrow cos^22x-2cos2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

7.

Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn

8.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)

NV
21 tháng 9 2020

9.

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)

\(\Leftrightarrow t^2+2mt+1=0\)

Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)

10.

\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)

\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)

NV
17 tháng 6 2019

Nhận thấy \(x=0\) không phải là nghiệm của BPT đã cho, chia 2 vế cho \(x^2\):

\(\Leftrightarrow\frac{\left(x^2-2x+4\right)}{x}.\frac{\left(x^2+x+4\right)}{x}-a-2018\le0\)

\(\Leftrightarrow\left(x+\frac{4}{x}-2\right)\left(x+\frac{4}{x}+1\right)-a-2018\le0\)

Đặt \(x+\frac{4}{x}=t\) \(\left(\left|t\right|\ge4\right)\) BPT trở thành:

\(\left(t-2\right)\left(t+1\right)-a-2018\le0\)

\(\Leftrightarrow t^2-t-a-2020\le0\)

\(\Leftrightarrow t^2-t-2020\le a\)

Xét \(f\left(t\right)=t^2-t-2020\) với \(\left|t\right|\ge2\)

Để BPT đã cho có nghiệm thì \(a\ge\min\limits_{\left|t\right|\ge2}f\left(t\right)\)

\(f'\left(t\right)=2t-1=0\Rightarrow t=\frac{1}{2}\)

\(f\left(-2\right)=-2014\) ; \(f\left(2\right)=-2018\)

\(\Rightarrow\min\limits_{\left|t\right|\ge2}f\left(t\right)=f\left(2\right)=-2018\)

\(\Rightarrow a\ge-2018\)

4 tháng 3 2019

(1−m2)(x+1)3+x2−x−3=0

f(x)=(1−m2) (x+1)3+x2−x−3 là hàm đa thức liên tục trên R. Do đó nó liên tục trên [-2; -1]

Ta có f(−1)=−1<0 f(−2)=m2+2>0 nên f(−1) f(−2)<0 với mọi m.

Do đó, phương trình f(x)=0 luôn có ít nhất một nghiệm trong khoảng (-2; -1) với mọi m. Nghĩa là, phương trình (1−m2) (x+1)3+x2−x−3 luôn có nghiệm với mọi m.

5 tháng 3 2019

Do hàm số \(\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3\) là hàm đa thức nên nó liên tục trên R, nên liên tục trên \(\left[-2,-1\right]\)

\(f\left(-1\right)=-1< 0;f\left(-2\right)=m^2+2>0\)

\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\)

Do đó phương trình luôn có nghiệm