\((x+y)^2\)-y+1=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

23 tháng 6 2021

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

8 tháng 5 2017

(Lời giải có thể hơi khó hiểu một chút)

Đề bài yêu cầu ta giải pt nghiệm nguyên \(2^x+5^y=n^2\)

Ta xét modulo 5. Rõ ràng \(n^2=0,1,4\left(mod5\right)\) nên \(2^x=0,1,4\left(mod5\right)\)

\(2^1=2\left(mod5\right)\)\(2^2=4\left(mod5\right)\)\(2^3=3\left(mod5\right)\)\(2^4=1\left(mod5\right)\) và sau đó quay vòng lại.

Từ đó ta thấy số dư của \(2^n\) khi chia cho 5 lặp lại theo chu kì 4 đơn vị.

Đồng thời, để \(2^x=0,1,4\left(mod5\right)\) thì \(x=0,2\left(mod4\right)\) hay \(x\) chẵn.

Đặt \(x=2k\). Pt thành \(4^k+5^y=n^2\)

-----

Ta chuyển sang xét modulo 3.

Do \(4^k=1\left(mod3\right)\) và \(n^2=0,1\left(mod3\right)\) và \(5^y=\left(-1\right)^y\left(mod3\right)\) nên \(y\) lẻ.

(Chỗ này mình ghi tắt. Bạn thử suy luận xem tại sao \(y\) chẵn không được nhé).

------

Trong pt cần giải ta biến đổi thành: \(5^y=n^2-4^k=\left(n-2^k\right)\left(n+2^k\right)\).

Vế trái chỉ gồm tích các số 5, do đó ta có: \(\hept{\begin{cases}n-2^k=5^b\\n+2^k=5^a\end{cases}}\) và \(b< a,a+b=y\).

Lấy hai vế trừ nhau ta có: \(2^{k+1}=5^a-5^b=5^b\left(5^{a-b}-1\right)\).

Vế trái không chia hết cho 5, nếu \(b\ge1\) thì vế phải sẽ chia hết cho 5 nên không được.

Vậy \(b=0,a=y\) và ta có \(2^{k+1}=5^y-1\).

-----

Ta viết \(5^y-1=\left(5-1\right)\left(5^{y-1}+5^{y-2}+...+5+1\right)\).

Để ý thấy, từ \(5^{y-1}\) tới \(5^0\) có \(y\) số lẻ, tức là tổng của chúng lẻ.

Chứng tỏ tổng này không là lũy thừa của 2, trừ trường hợp tổng đó là 1.

Tức là \(y=1\). Từ việc \(5^y-1=2^{k+1}\) suy ra \(k=1,x=2\).

Vậy \(\left(x;y\right)=\left(2;1\right)\) là nghiệm duy nhất của pt.

Ta có \(y^2+y=x^4+x^3+x^2+x\)

\(\Leftrightarrow\left(2y+1\right)^2=4x^4+4x^3+4x^2+x+1\)

Nếu \(\left(2y+1\right)^2< \left(2x^2+x\right)^2\Rightarrow3x^2+4x+1< 0\Rightarrow\frac{-1}{3}< x< -1\)vô lí

Vậy \(\left(2y+1\right)^2\ge\left(2x^2+x\right)^2\)mặt khác\(\left(2y+1\right)^2< \left(2x^2+x+2\right)^2\)nên theo điều kiện chặn ta sẽ tìm được x;y thỏa mãn

6 tháng 8 2020

Để cho gọn, đặt {x2=ay2=b

(a+4b+28)2−17a2−17b2=238b+833

\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833

\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0

\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0

\(\Leftrightarrow\)(2x−y)(2x+y)=7

Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương

\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3

Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)

#Shinobu Cừu

30 tháng 12 2018

\(2y^2+2xy+x+3y-13=0\)

\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)

\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)

\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)

Rồi bạn làm từng cặp ra nhé! 

6 tháng 3 2019

VINSCHOOL

17 tháng 1 2020

Có: \(x^5+y^2=xy^2+1\)

<=> \(x^5-1=y^2\left(x-1\right)\)(1)

TH1: x = 1 

=> \(1^2+y^2=1.y^2+1\) đúng với mọi y

TH2: \(x\ne1\)

(1) <=> \(y^2=x^4+x^3+x^2+x+1\)

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Có:

+)  \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)

\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)

=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)

+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)

=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)

<=> x = 0 

=> \(y=\pm1\)

TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)

<=> \(2x+3-x^2=0\)

<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Với x = -1 => \(y=\pm1\)

Với x = 3 => \(y=\pm11\)

Kết luận:...