Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{y-4}=b\left(b\ge0;\right)\)
M = \(\frac{a}{a^2+1}+\frac{b}{b^2+4}\); a2 +1 \(\ge2a;b^2+4\ge4b\)=> M \(\le\frac{a}{2a}+\frac{b}{4b}=\frac{3}{4}\)
M đạt GTLN khi a=1, b=2 hay x=2; y= 8
2) <=> (x-y)2 + (x+2)2 =8 => (x+2)2\(\le8< =>\left|x+2\right|\le\sqrt{8}\approx2< =>-2\le x+2\le2< =>\)\(-4\le x\le0\)
x=-4 => (y+4)2 =4 <=> y = -2;y = -6
x=-3 => (y+3)2 = 7 (vô nghiệm); x=-1 => (y+1)2 =7 (vô nghiệm)
x=0 => y2 = 4 => y =2; =-2
vậy có các nghiệm (x;y) = (-4;-2); (-4;-6); (0;-2); (0;2)
3) \(\frac{x^2}{y^2}+\frac{y^2}{z^2}\ge2\frac{x}{z}\left(a^2+b^2\ge2ab\right)\); tương tự với các số còn lại ta được điều phải chứng minh
3) sửa lại
áp dụng a2+b2+c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{3}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)(vì \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{yzx}}=3\))
dấu '=' khi x=y=z
\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)
\(\Leftrightarrow3x^2-3xy+3y^2=7x+7y\)
\(\Leftrightarrow3x^2+\left(-3y-7\right)x+3y^2-7y=0\)
Để phương trình theo nghiệm x có nghiệm thì:
\(\Delta=\left(-3y-7\right)^2-4.3.\left(3y^2-7y\right)\ge0\)
\(\Leftrightarrow0\le y\le5\)
Thế lần lược các giá trị y cái nào làm cho x nguyên thì nhận.
\(A=\frac{1}{x}+\frac{4}{y}\ge\frac{\left(1+2\right)^2}{x+y}=9\) ( BĐT Cauchy - Schwart)
Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{x}=\frac{2}{y}\) và x + y = 1 \(\Rightarrow y=2x=2\left(1-y\right)\Rightarrow y=\frac{2}{3}\Rightarrow x=\frac{1}{3}\)
Vậy min A = 9 khi và chỉ khi \(y=\frac{2}{3};x=\frac{1}{3}\)
\(A=\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\)
Có:\(\frac{1}{x}+\frac{1}{\frac{1}{2}y}+\frac{1}{\frac{1}{2}y}\ge\frac{9}{x+\frac{1}{2}y+\frac{1}{2}y}=9\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}y=\frac{1}{3}\)
tick nhé
Áp dụng BĐT Bun .... :
\(A=\frac{1}{x}+\frac{4}{y}=\left(x+y\right)\left(\frac{1}{x}+\frac{4}{y}\right)=\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2\right]\)
\(\ge\left[\sqrt{x}\cdot\frac{1}{\sqrt{x}}+\sqrt{y}\cdot\frac{2}{\sqrt{y}}\right]^2=\left(1+2\right)^2=9\)
Vậy Min A = 9 tại \(\frac{\sqrt{x}}{\frac{1}{\sqrt{x}}}=\frac{\sqrt{y}}{\frac{2}{\sqrt{y}}}\Rightarrow x=\frac{y}{2}\) thay vào x + y = 1 Giải ra x ; y
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
A=x+y)(1/x+1/y)
phá ra áp dụng cô si cho 2 cái ẩn,,,dấu = 2x=y
Do \(x,y\inℚ;x,y\ne0\)nên đặt \(x=\frac{a}{b},y=\frac{c}{d}\)trong đó \(a,b,c,d\inℤ;a,b\ne0;c,d>0\)và \(\left(a;b\right)=\left(c;d\right)=1\)
Ta có:\(x+y=\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\inℤ\)
\(\Rightarrow ab+bc⋮bd\)
\(\Rightarrow\hept{\begin{cases}ad+bc⋮b\\ad+bc⋮d\end{cases}}\Rightarrow\hept{\begin{cases}d⋮b\\b⋮d\end{cases}}\)
\(\Rightarrow b=d\left(1\right)\)vì \(\left(a;b\right)=\left(c;d\right)=1\)
Lại có:\(\frac{1}{x}+\frac{1}{y}=\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}\inℤ\)
\(\Rightarrow bc+ad⋮ac\)
\(\Rightarrow\hept{\begin{cases}bc+ad⋮a\\bc+ad⋮c\end{cases}}\Rightarrow\hept{\begin{cases}c⋮a\\a⋮c\end{cases}}\)
\(\Rightarrow a=c\left(2\right)\)vì \(\left(a;b\right)=\left(c;d\right)=1\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{a}{b}\in\left\{\frac{c}{d},-\frac{c}{d}\right\}\Rightarrow x\in\left\{y,-y\right\}\)
Với \(x=y=\frac{a}{b}\)thì khi đó:
\(x+y=\frac{2a}{b}\inℤ\Rightarrow2⋮b\Rightarrow b\in\left\{1;-1;2;-2\right\}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{2b}{a}\Rightarrow2⋮a\Rightarrow a\in\left\{1;-1;-2;2\right\}\)
\(\Rightarrow x=y=\frac{a}{b}=\pm1=\pm2=\pm\frac{1}{2}\)
Nếu x=-y thì:
\(x+y=0\Rightarrow\frac{1}{x}+\frac{1}{y}=0\left(L\right)\)
Vậy các cặp số \(\left(x;y\right)\)cần tìm là:\(\left(1;1\right);\left(2;2\right);\left(-1;-1\right);\left(-2;-2\right);\left(-\frac{1}{2};-\frac{1}{2}\right);\left(\frac{1}{2};\frac{1}{2}\right)\)
Dòng đầu tiên chưa chặt chẽ. Giải thích: c, d >0?
Trường hợp 2 tại sao loại ? x=-y thì x+y=0 là số nguyên và 1/x +1/y cũng là số nguyên.
Lần sau làm bài nhớ khảo lại bài nhé!:)