K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(5^{x+1}\cdot3^y=75^x\)

\(\Leftrightarrow5^{x+1}\cdot3^y=5^{2x}\cdot3^x\)

=>2x=x+1 và x=y

=>x=1 và y=1

1 tháng 9 2016

ek cu hay qua do 

                      n.minh

 

27 tháng 12 2015

Vì (2017;2016) =1

=> x >/ 0

và y>/ -1 

thì (2017x - 2016y+1 là số nguyên

18 tháng 4 2015

Biến đổi bt tương đương : (x^2-1) / 2 = y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x > y và x phải là số lẽ. 
Từ đó đặt x = 2k + 1 (k nguyên dương); 
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

18 tháng 4 2015

Biến đổi bt tương đương : (x^2-1) / 2 = y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x > y và x phải là số lẽ. 
Từ đó đặt x = 2k + 1 (k nguyên dương); 
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Nhớ like cho mình nha ^^

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

1.

PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$

$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$

$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$

$\Rightarrow d=1,2$

Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)

$\Rightarrow d=1$

Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
 $y^2+1, y+1$ cũng là scp

Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$

$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$

$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$

$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$

 

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

2.

$x^4+2x^2=y^3$

$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$

Đặt $d=(y+1, y^2-y+1)$

$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$

$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$

$\Rightarrow 3y\vdots d$

Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,

$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)

Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$

$\Rightarrow y\vdots d$

Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
 $y+1, y^2-y+1$ cũng là scp

Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$

Có:

$y^2-y+1=b^2$

$\Leftrightarrow (2y-1)^2+3=(2b)^2$

$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$

Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$