Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Lời giải có thể hơi khó hiểu một chút)
Đề bài yêu cầu ta giải pt nghiệm nguyên \(2^x+5^y=n^2\)
Ta xét modulo 5. Rõ ràng \(n^2=0,1,4\left(mod5\right)\) nên \(2^x=0,1,4\left(mod5\right)\)
\(2^1=2\left(mod5\right)\), \(2^2=4\left(mod5\right)\), \(2^3=3\left(mod5\right)\), \(2^4=1\left(mod5\right)\) và sau đó quay vòng lại.
Từ đó ta thấy số dư của \(2^n\) khi chia cho 5 lặp lại theo chu kì 4 đơn vị.
Đồng thời, để \(2^x=0,1,4\left(mod5\right)\) thì \(x=0,2\left(mod4\right)\) hay \(x\) chẵn.
Đặt \(x=2k\). Pt thành \(4^k+5^y=n^2\)
-----
Ta chuyển sang xét modulo 3.
Do \(4^k=1\left(mod3\right)\) và \(n^2=0,1\left(mod3\right)\) và \(5^y=\left(-1\right)^y\left(mod3\right)\) nên \(y\) lẻ.
(Chỗ này mình ghi tắt. Bạn thử suy luận xem tại sao \(y\) chẵn không được nhé).
------
Trong pt cần giải ta biến đổi thành: \(5^y=n^2-4^k=\left(n-2^k\right)\left(n+2^k\right)\).
Vế trái chỉ gồm tích các số 5, do đó ta có: \(\hept{\begin{cases}n-2^k=5^b\\n+2^k=5^a\end{cases}}\) và \(b< a,a+b=y\).
Lấy hai vế trừ nhau ta có: \(2^{k+1}=5^a-5^b=5^b\left(5^{a-b}-1\right)\).
Vế trái không chia hết cho 5, nếu \(b\ge1\) thì vế phải sẽ chia hết cho 5 nên không được.
Vậy \(b=0,a=y\) và ta có \(2^{k+1}=5^y-1\).
-----
Ta viết \(5^y-1=\left(5-1\right)\left(5^{y-1}+5^{y-2}+...+5+1\right)\).
Để ý thấy, từ \(5^{y-1}\) tới \(5^0\) có \(y\) số lẻ, tức là tổng của chúng lẻ.
Chứng tỏ tổng này không là lũy thừa của 2, trừ trường hợp tổng đó là 1.
Tức là \(y=1\). Từ việc \(5^y-1=2^{k+1}\) suy ra \(k=1,x=2\).
Vậy \(\left(x;y\right)=\left(2;1\right)\) là nghiệm duy nhất của pt.
Do \(x,y\inℚ;x,y\ne0\)nên đặt \(x=\frac{a}{b},y=\frac{c}{d}\)trong đó \(a,b,c,d\inℤ;a,b\ne0;c,d>0\)và \(\left(a;b\right)=\left(c;d\right)=1\)
Ta có:\(x+y=\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\inℤ\)
\(\Rightarrow ab+bc⋮bd\)
\(\Rightarrow\hept{\begin{cases}ad+bc⋮b\\ad+bc⋮d\end{cases}}\Rightarrow\hept{\begin{cases}d⋮b\\b⋮d\end{cases}}\)
\(\Rightarrow b=d\left(1\right)\)vì \(\left(a;b\right)=\left(c;d\right)=1\)
Lại có:\(\frac{1}{x}+\frac{1}{y}=\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}\inℤ\)
\(\Rightarrow bc+ad⋮ac\)
\(\Rightarrow\hept{\begin{cases}bc+ad⋮a\\bc+ad⋮c\end{cases}}\Rightarrow\hept{\begin{cases}c⋮a\\a⋮c\end{cases}}\)
\(\Rightarrow a=c\left(2\right)\)vì \(\left(a;b\right)=\left(c;d\right)=1\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{a}{b}\in\left\{\frac{c}{d},-\frac{c}{d}\right\}\Rightarrow x\in\left\{y,-y\right\}\)
Với \(x=y=\frac{a}{b}\)thì khi đó:
\(x+y=\frac{2a}{b}\inℤ\Rightarrow2⋮b\Rightarrow b\in\left\{1;-1;2;-2\right\}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{2b}{a}\Rightarrow2⋮a\Rightarrow a\in\left\{1;-1;-2;2\right\}\)
\(\Rightarrow x=y=\frac{a}{b}=\pm1=\pm2=\pm\frac{1}{2}\)
Nếu x=-y thì:
\(x+y=0\Rightarrow\frac{1}{x}+\frac{1}{y}=0\left(L\right)\)
Vậy các cặp số \(\left(x;y\right)\)cần tìm là:\(\left(1;1\right);\left(2;2\right);\left(-1;-1\right);\left(-2;-2\right);\left(-\frac{1}{2};-\frac{1}{2}\right);\left(\frac{1}{2};\frac{1}{2}\right)\)
Dòng đầu tiên chưa chặt chẽ. Giải thích: c, d >0?
Trường hợp 2 tại sao loại ? x=-y thì x+y=0 là số nguyên và 1/x +1/y cũng là số nguyên.
Lần sau làm bài nhớ khảo lại bài nhé!:)
Xửa đề:
\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)
\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)
\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)
\(\Rightarrow x+z=y+1\)
\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)
\(\Rightarrow x=y=z=1\)
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
k mik nha