Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)
đề thế này còn tạm chấp nhận :v
Từ \(x+y+z=2017\Rightarrow\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=\frac{x+y}{xy}+\frac{x+y}{z+''x+y+z''}=0\Rightarrow''x+y''''\frac{1}{xy}+\frac{1}{xz+yz+z^2}=0\)
\(\Rightarrow\frac{''x+y''''y+z''''z+x''}{xyz''x+y+z''}=0\Rightarrow''x+y''''y+z''''z+x''=0\) Do x,y,z khác 0
Mà \(x+y+z=2017\)
\(\Rightarrow x+y=0\Rightarrow x=2017\)
hoặc \(y+z=0\Rightarrow x=2017\)
hoặc \(x+z=0\Rightarrow x=2017\)
viết tạm vào đây vậy
sau khi nhân ra ta có ...và Áp dụng bu nhi ta có
\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
=> \(\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}\ge\left(y+z\right)\left(x+\sqrt{yz}\right)=xy+xz+\left(y+z\right)\sqrt{yz}\)
mà \(y+z\ge2\sqrt{xy}\Rightarrow\left(y+z\right)\sqrt{yz}\ge2yz\)
=> \(\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(z+x\right)}}{x}\ge y+z+\frac{2yz}{x}\)
mấy cái kia tương tự rồi cộng vào
<br class="Apple-interchange-newline"><div id="inner-editor"></div>(y+z)√(x+y)(x+z)≥(y+z)(x+√yz)=xy+xz+(y+z)√yz
mà y+z≥2√xy⇒(y+z)√yz≥2yz
=> (y+z)√(x+y)(z+x)x ≥y+z+2yzx
:redeye: Ta có thể chỉ xét cho các số này khác $0$
Khi đó $\frac{xy-1}{3z} = \frac{2-xz}{y}$
Hay $xy^{2}-y = 6z - 3xz^{2}<=>3xz^{2}-6z +xy^{2}-y=0$
Có $\Delta = 36 - 12x(xy^{2}-y)$ hay $3\geq (xy)^{2} - xy\geq 0$
Xét $xy = 1$
+ Nếu $x = y = 1$ thì $3zt = 0$ và $z + t = 2$ ( đã xét ở trường hợp có ít nhất 1 số là 0 )
+ Nếu $x = y = -1$ thì $z+t=-2$ và $zt=0$ cũng tương tự
:) Hoàn toàn có thể giải quyết nốt .
P=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x-1}\right)}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=1+\frac{1}{\sqrt{x}}\)
Để\(P\in Z\)<=>\(\frac{1}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}\inƯ\left(1\right)=1\)\(Với\sqrt{x}=1\Leftrightarrow x=1\)loại
Vậy không có giá trị x nào thỏa mãn P\(\in\)Z
chu vi của một hình chữ nhật là 96cm . Nếu thêm vào chiều rộng 3cm và bớt ở chiều dài đi 3cm . Thì hình chữ nhật đó thành hình vuông . Tính diện tích hình chữ nhật đó
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
Đặt: \(x+\sqrt{2017}=a\) với \(a\in Z\), suy ra \(x=a-\sqrt{2017}\).
Ta có: \(\frac{8}{x}=\frac{8}{a-\sqrt{2017}}=\frac{8a+8\sqrt{2017}}{a^2-2017}=\frac{8a}{a^2-2017}+\frac{8}{a^2-2017}.\sqrt{2017}\)
Do vậy, ta có: \(\frac{8}{x}-\sqrt{2017}=\frac{8a}{a^2-2017}+\left(\frac{8}{a^2-2017}-1\right).\sqrt{2017}\)là một số nguyên khi \(\left(\frac{8}{a^2-2017}-1\right)=0\), từ đó tính được \(a=\pm45\Rightarrow x=\pm45-\sqrt{2017}\)
"các số thuộc x " chứ ko phải là "cá số thực x"