Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
a) Đề có lẽ là:
đk: \(x\ge0\)
\(\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}+2\right)x=x\sqrt{x}-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}+1+x\sqrt{x}+2x-x\sqrt{x}+\sqrt{x}-3=0\)
\(\Leftrightarrow3x+3\sqrt{x}-2=0\)
\(\Leftrightarrow3\left(x+\sqrt{x}+\frac{1}{4}\right)-\frac{11}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2-\frac{11}{12}=0\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{3+\sqrt{33}}{6}\right)\left(\sqrt{x}+\frac{3-\sqrt{33}}{6}\right)=0\)
Vì \(\sqrt{x}\ge0\left(\forall x\right)\)
=> \(\sqrt{x}=\frac{3-\sqrt{33}}{6}\Rightarrow x=\frac{7-\sqrt{33}}{6}\)
b) đk: \(x\ge1\)
Ta có: \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
\(\Leftrightarrow\sqrt{x^2-1}=\sqrt{15}\)
\(\Leftrightarrow x^2-1=15\)
\(\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
a) Để biểu thức có nghĩa thì \(x\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\)
b) Để biểu thức có nghĩa thì \(\left(x+1\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge0\\x+2\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)
c) Để biểu thức có nghĩa thì \(\left(3-x\right)\left(4-x\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4\ge0\\x-3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le3\end{matrix}\right.\)