Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x< \frac{9}{2}\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;...;4\right\}\Rightarrow\sum x=7\)
Hàm số y = m - 2 x - x + 1 xác định khi và chỉ khi m - 2 x ≥ 0 x + 1 ≥ 0 ⇔ x ≤ m 2 x ≥ - 1 .
Do đó tập xác định của hàm số y = m - 2 x - x + 1 là một đoạn trên trục số khi và chỉ khi m 2 > - 1 ⇔ m > - 2
ĐKXĐ: \(-3\le x\le6\)
Gọi A là tên hàm số trên
\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)
\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)
\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)
Đặt A = \(\sqrt{x+3}+\sqrt{6-x}\) ĐKXĐ: \(-3\le x\le6\)
\(A^2=x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}\)
\(=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\ge9\)
\(\Rightarrow A\ge3\)
Vậy min A = 3 ⇔\(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)(thỏa mãn)
Mặt khác \(A^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\le9+x+3+6-x=18\)
\(\Rightarrow A\le3\sqrt{2}\)
Vậy maxA = \(3\sqrt{2}\)⇔\(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)(thỏa mãn)
Điều kiện xác định: 2 x - 3 ≥ 0 4 x - 3 ≥ 0 ⇔ x ≥ 3 2 x ≥ 3 4 ⇔ x ≥ 3 2
Tập xác định của hàm số là [ 3 2 ; + ∞ )