\(\frac{2}{3-4x}\)

b)y=\(\frac{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

undefinedundefinedundefined

6 tháng 7 2019

a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}

b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).

Vậy tập xác định D = \([-2;+\infty)/1\)

7 tháng 7 2019

y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)

suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm

\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)

\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

a)

ĐK: $x-2\geq 0\Leftrightarrow x\geq 2$

TXĐ: $[2;+\infty)$

b)

ĐK: $4x-3\geq 0\Leftrightarrow x\geq \frac{3}{4}$

TXĐ: $[\frac{3}{4};+\infty)$

c) ĐK: \(x+2>0\Leftrightarrow x>-2\)

TXĐ: $(-2;+\infty)$

d)

ĐK: $3-x>0\Leftrightarrow x< 3$

TXĐ: $(-\infty; 3)$

e)

$4-3x>0\Leftrightarrow x< \frac{4}{3}$

TXĐ: $(-\infty; \frac{4}{3})$

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

f)

ĐK:\(\left\{\begin{matrix} x^2+2\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow x\geq 0\)

TXĐ: $[0;+\infty)$

g) ĐK: \(\left\{\begin{matrix} x^2-2x+1\geq 0\\ 2-3x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2\geq 0\\ x\leq\frac{2}{3}\end{matrix}\right.\Leftrightarrow x\leq \frac{2}{3}\)

TXĐ: $(-\infty; \frac{2}{3}]$

h)

ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow x\geq 2\)

TXĐ: $[2;+\infty)$

i)

ĐK: \(\left\{\begin{matrix} 2+x\geq 0\\ 2-x\geq 0\end{matrix}\right.\Leftrightarrow 2\geq x\geq -2\)

TXĐ: $[-2;2]$

14 tháng 7 2019

a) \(Y=\frac{\sqrt{3-2x}}{\sqrt{1-x}}+\frac{\sqrt{2x+1}}{x}\)

\(\Rightarrow\left\{{}\begin{matrix}3-2x\ge0\\1-x>0\\2x+1\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3}{2}\\x< 1\\x\ge\frac{-1}{2}\\x\ne0\end{matrix}\right.\)

TXĐ: \([-\frac{1}{2};\frac{3}{2}]\backslash\left\{0\right\}\)

b) \(Y=\frac{\sqrt{3x+5}}{x-2}+\frac{\sqrt{2x+3}}{\sqrt{4-x}}\)

\(\left\{{}\begin{matrix}3x+5\ge0\\x-2\ne0\\2x+3\ge0\\4-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{3}\\x\ne2\\x\ge-\frac{3}{2}\\x< 4\end{matrix}\right.\)

TXĐ: \([-\frac{5}{3};4)\backslash\left\{2\right\}\)