K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ∆AMD=∆AME(Cạnh huyền AM chung, góc nhọn^A1 = ^A2)

∆MDB=∆MEC(Cạnh huyền BM=CM, cạnh góc vuông.

MD=ME, do ∆AMD=∆AME)

∆AMB= ∆AMC(Cạnh AM chung),

Cạnh MB=MC, cạnh AB=AC

Vì AD=AE, DB=EC



20 tháng 4 2017

Ta có: \(\Delta\)AMD=\(\Delta\)AME(Cạnh huyền AM chung, góc nhọn \(\widehat{A}_1=\widehat{A}_2\))

\(\Delta\)MDB=\(\Delta\)MEC(Cạnh huyền BM=CM, cạnh góc vuông )

MD=ME, do \(\Delta\)AMD=\(\Delta\)AME)

\(\Delta\)AMB= \(\Delta\)AMC(Cạnh AM chung),

Cạnh MB=MC, cạnh AB=AC

Vì AD=AE, DB=EC



19 tháng 5 2017

Các tam giác bằng nhau:
\(\Delta ABC=\Delta EDC\left(c-g-c\right)\)

\(\Delta ACD=\Delta ECB\left(c-g-c\right)\)

\(\Delta ABD=\Delta EDB\left(c-c-c\right)\)

\(\Delta ABE=\Delta EDA\left(c-c-c\right)\).

20 tháng 4 2017

Giải:

∆AHB và ∆KBH có

AH=KH(gt)

\(\widehat{AHB}\)=\(\widehat{KHM}\)

BH cạnh chung .

nên ∆AHB=∆KBH(c.g.c)

suy ra: \(\widehat{ABH}\)=\(\widehat{KBH}\)

Vậy BH là tia phân giác của góc B.

Tương tự ∆AHC =∆KHC(c.g.c)

Suy ra: \(\widehat{ACH}\)=\(\widehat{KCH}\)

Vậy CH là tia phân giác của góc C.

17 tháng 11 2017

tam giác KBH nên chuyển thành tam giác KHB

20 tháng 4 2017

Tam giác DKE có:

\(\widehat{D}+\widehat{K}+\widehat{E}\)=1800 (tổng ba góc trong của tam giác).

\(\widehat{D}\)+800 +400=1800

\(\widehat{D}\)=1800 -1200= \(60^0\)

Nên ∆ ABC và ∆KDE có:

AB=KD(gt)

\(\widehat{B}\)=\(\widehat{D}\)=600và BE= ED(gt)

Do đó ∆ABC= ∆KDE(c.g.c)

Tam giác MNP không có góc xem giữa hai cạnh tam giác KDE ha ABC nên không bằng hai tam giác còn lại.


17 tháng 11 2017

xen chứ ko phải xem ,chú ý chính tảbanhqua

7 tháng 7 2017

\(\Delta ABC=\Delta EHD\)

6 tháng 11 2017

Hai tam giác trên bằng nhau.

Ký hiệu: ∆ABC = ∆ EHD

2 tháng 6 2017

-Xét tam giác vuông BDA và tam giác vuông BDC có:

ABD = CBD

BD: cạnh chung

=> tam giác BDA = tam giác BDC

-Ta có: góc G = góc H

góc FIG = góc EIH

Mà F + G + FIG = E + H + EIH = 1800

=> góc F = góc E

Xét tam giác IFG và tam giác IEH có:

IF = IE (gt)

FIG = EIH (gt)

góc F = góc E (cmt)

=> tam giác IFG = tam giác IEH

20 tháng 4 2017


  • Xem hình 98

∆ABC và ∆ABD có:

∠CAB = ∠DAB(gt)

AB là cạnh chung.

∠CBA = ∠DBA (gt)

Nên ∆ABC=∆ABD(g.c.g)

  • Xem hình 99.

Ta có:

∠ABC + ∠ABD =1800 (Hai góc kề bù).

∠ACB + ∠ACE =1800

Mà ∠ABC = ∠ACB(gt)

Nên ∠ABD = ∠ACE

* ∆ABD và ∆ACE có:

∠ABD = ∠ACE (cmt)

BD=EC(gt)

∠ADB = ∠AEC (gt)

Nên ∆ABD=∆ACE(g.c.g)

* ∆ADC và ∆AEB có:

∠ADC = ∠AEB (gt)

∠ACD = ∠ABE (gt)

Ta có: DC = DB + BC
EB = EC + BC
Mà BD = EC (gt)
⇒ DC = EB

Nên ∆ADC=∆AEB(g.c.g)

26 tháng 11 2017

- Hình 98): Xét ΔABC và ΔABD có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABC = ΔABD (g.c.g)

- Hình 99): Ta có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Xét ΔABD và ΔACE có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABD = ΔACE ( g.c.g)

Xét ΔADC và ΔAEB có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)

Nên ΔADC = ΔAEB (g.c.g)

13 tháng 5 2017

Các tam giác cân: ABC,ABD,ACE,DAE

13 tháng 5 2017

Tam giác ABC có AB = AC (theo đề bài)

Suy ra: tam giác ABC cân tại A( dựa theo định nghĩa tam giác cân)

=> góc ABC = góc ACB ( dựa theo tính chất tam giác cân)

=> góc ABC = góc ACB = \(\left(180^0-36^0\right):2=72^0\)

Có góc ACB + góc ACE = \(180^0\) (2 góc kề bù)

=> góc ACE = \(180^0\)- góc ACB

=> góc ACE = \(180^0-72^0=108^0\)

Tam giác ACE có góc CAE + góc CEA + góc ACE = \(180^0\)(tổng 3 góc của 1 tam giác)

=> góc CEA = \(180^0-\left(108^0+36^0\right)=36^0\)(*)

Tam giác ADE có góc BDA = góc CEA = \(36^0\)

=> tam giác ADE cân tại A ( dựa theo tính chất của tam giác cân)