K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

72+120=50

tích nha bạn êu

28 tháng 3 2016

 Ta thấy 7+ 12y = 50 thỏa mãn khi x = 2 và khi y = 0.

72 + 120 = 49 + 1 = 50.

Vậy, x = 2 ; y = 0. 

6 tháng 11 2018

\(2^{x+1}.3^y=12^x\)

\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)

\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)

\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)

\(a,3x^2+5y^2=32\)vì x,y thuộc Z

\(\Rightarrow3x^2+5y^2=12+20\)

\(\Rightarrow\hept{\begin{cases}x^2=4\\y^2=4\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)

\(b,3^x+342=7^y\) vì x,y thuộc Z

\(\Rightarrow7^y-3^x=343-1\)

\(\Rightarrow\hept{\begin{cases}y=3\\x=0\end{cases}}\)

\(c,5^x+7^y=126\)vì x,y thuộc Z

\(\Rightarrow5^x+7^y=125+1\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

Học tốt ^-^

25 tháng 11 2019

Bài 1) ĐK : \(x,y\in N\)

a) \(2^{x+1}\cdot3^y=12\Leftrightarrow2^{x+1}\cdot3^y=2^2\cdot3\Rightarrow\hept{\begin{cases}x+1=2\\y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}.}\)(thoả mãn đ/k đề)

Vậy x = 1 và y = 3

b) \(\frac{10^x}{5^y}=20^y\Leftrightarrow\left(\frac{10}{5}\right)^y=\left(2^{10}\right)^y\Leftrightarrow2^y=2^{10y}\Leftrightarrow y=10y\Leftrightarrow9y=0\Leftrightarrow y=0\)(thoả mãn đ/k đề)

Vậy y = 0

(* Lưu ý: Từ chỗ y = 10y chuyển vế để nhận nghiệm y = 0, nếu chia ra sẽ có 1 = 10 (vô lý))

c)\(x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\hept{\begin{cases}x=0\left(N\right)\\x=-1\left(L\right)\end{cases}}\)(loại vì x = -1 vì \(x\in N\))

Vậy x = 0

d) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow x+2=x+4\Leftrightarrow x-x=4-2\Leftrightarrow0x=4\)(vô lý)

Vậy \(x=\varnothing\)

Bài 2) ĐK: \(a,b\ne0\)

Bài này có vẻ như là một bài chứng minh, lần sau bạn nên ghi đầy đủ nhé ^^!

a) \(a+5b=\left(a+b\right)+4b\)mà \(\hept{\begin{cases}a+b⋮4\\4a⋮4\end{cases}\Rightarrow\left(a+b\right)+4b⋮4}\)hay \(a+5b⋮4\left(đpcm\right)\)

b) \(a-3b=\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Rightarrow\left(a+b\right)-4b⋮4}\)hay \(a-3b⋮4\left(đpcm\right)\)

c) \(3a-b=3a+3b-4b=3\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(a+b\right)⋮4\\4b⋮4\end{cases}}}\Rightarrow3\left(a+b\right)-4b⋮4\) hay \(3a-b⋮4\left(đpcm\right)\)

Đây chỉ là cách làm của mình, bạn có thể thay đổi cho phù hợp với bạn nhé!

Học tốt ^3^

25 tháng 11 2019

đpcm là j