\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}\)\(+4+x-3-6\sqrt{x-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

19 tháng 2 2022

@@@

Khó quá em mới lớp 5

HT

11 tháng 6 2019

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Rightarrow\left(x-1\right)-2\sqrt{x-1}+1\)\(+\left(y-2\right)-4\sqrt{y-2}+4\)\(+\left(z-3\right)-6\sqrt{z-3}+9\)\(=0\)

\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)

11 tháng 6 2019

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-2\sqrt{y-2}.2+4\right)+\left(z-3-2\sqrt{z-3}.3+9\right)=0\)

\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)( 1 )

Mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)

từ đó tìm được : \(x=2;y=6;z=12\)

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

DD
12 tháng 7 2021

ĐK: \(x\ge1,y\ge2,z\ge3\).

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(thỏa mãn)

4 tháng 7 2016

Giải xong rồi

(x;y;z)=(2;6;12) 

OKhaha

4 tháng 7 2016

Bạn nào làm xong rồi thì xem mình ra kq đúng chưa nhaok

6 tháng 12 2016

ĐKXĐ : \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)

Với điều kiện trên thì pt đã cho tương đương với : 

\(\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

Mà \(\left(\sqrt{x-1}-1\right)^2\ge0,\left(\sqrt{y-2}-2\right)^2\ge0,\left(\sqrt{z-3}-3\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)

Vậy đẳng thức xảy ra khi \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\) (tmđk)

ĐKXĐ : {

x≥1
y≥2
z≥3

Với điều kiện trên thì pt đã cho tương đương với : 

[(x−1)−2√x−1+1]+[(y−2)−4√y−2+4]+[(z−3)−6√z−3+9]=0

⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0

Mà (√x−1−1)2≥0,(√y−2−2)2≥0,(√z−3−3)2≥0

⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0

Vậy đẳng thức xảy ra khi {

(√x−1−1)2=0
(√y−2−2)2=0
(√z−3−3)2=0
13 tháng 6 2017

Sai đề kìa \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x-1}+1-1\right)+\left(y-4\sqrt{y-2}+4-2\right)+\left(z-6\sqrt{z-3}+9-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

Sai đề kìa x+y+z+8=2√x−1+4√y−2+6√z−3

⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0

⇔(x−2√x−1+1−1)+(y−4√y−2+4−2)+(z−6√z−3+9−3)=0

⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0

⇒{

√x−1−1=0
√y−2−2=0
√z−3−3=0

⇒{

√x−1=1
√y−2=2
√z−3=3
29 tháng 7 2016

a,

\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)

NM
28 tháng 7 2021

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

29 tháng 7 2021

ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)