\(\sqrt{x}=4\)             c, \(\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2023

a)

\(\sqrt{x}=4\Rightarrow x=4^2=16\)

c) \(x\in\varnothing\)

e)  \(\sqrt{x}=6,25\Rightarrow x=\left(6,25\right)^2=39,0625\)

b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)

d) \(\sqrt{x}=0\Rightarrow x=0\)

Cách đánh đề độc lạ ghê:v

a: =>x=16

b: =>x=7

c: =>x thuộc rỗng

d: =>x=0

e: =>x=(25/4)^2=625/16

10 tháng 8 2016

\(\sqrt{x}=3\Rightarrow x=9\)

\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)

\(\sqrt{x}=0\Rightarrow x=0\)

\(\sqrt{x}=-2\Rightarrow x=\varnothing\)

10 tháng 8 2016

a)\(\sqrt{x}=3\Rightarrow x=9\)

b)\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)

c)\(\sqrt{x}=0\Rightarrow x=0\)

d)\(\sqrt{x}=-2\Rightarrow x=4\)

23 tháng 4 2017

\(\sqrt{9}=3\)

\(\sqrt{25=3}\)

\(\sqrt{0}=0\)

\(-\sqrt{4}\)

7 tháng 9 2017

a, \(\sqrt{x}\)=3 ( đkxđ : \(x\ge0\))

<=> \(\left(\sqrt{x}\right)^{^{ }2}\)= \(^{3^2}\)

<=> x = 9

b, \(\sqrt{x}\)= \(\sqrt{5}\) ( đkxđ : \(x\ge0\))

<=> \(\left(\sqrt{x}\right)^2=\left(\sqrt{5}\right)^2\)

<=> x = 5

c, \(\sqrt{x}=0\) ( đkxđ : \(x\ge0\))

<=> \(\left(\sqrt{x}\right)^2=0^2\)

<=> x = 0

d, \(\sqrt{x}=-2\) ( đkxđ : \(x\ge0\))

vô nghiệm

Vậy k có giá trị nào của x ( tm đkxđ)

2 tháng 9 2017

Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)

\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)

Vì \(\sqrt{3}\ne0\)

Nên : x - 5 = 0

Vậy x = 5. 

2 tháng 9 2017

b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)

\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)

\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)

Vì \(\sqrt{2}\ne0\)

Nên x - 5 = 0

Suy ra : x = 5

9 tháng 9 2020
https://i.imgur.com/UhA0o06.jpg
27 tháng 5 2017

chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương

\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)

\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)

\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)

\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)

CÂU CUỐI chưa làm đc

28 tháng 5 2017

ý cuối cùng này :

\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có

\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)

\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)

\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)

28 tháng 7 2019

\(a,\sqrt{x^4}=7\Leftrightarrow x^2=7\Leftrightarrow x=\pm\sqrt{7}\)

\(Dk:x\ge\frac{2}{3};\sqrt{3x-2}=4\Leftrightarrow3x-2=16\Leftrightarrow3x=18\Leftrightarrow x=6\left(tm\right)\)

\(dk:x\ge\frac{3}{2};\sqrt{2x-3}=\sqrt{x-1}\Leftrightarrow2x-3=x-1\Leftrightarrow x=2\left(tm\right)\)

\(dk:x\ge0;x-10\sqrt{x}+25=0\Leftrightarrow\left(\sqrt{x}-5\right)^2=0\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)

\(\sqrt{2x}< 3\Leftrightarrow\sqrt{2}.\sqrt{x}< 3\Leftrightarrow0\le\sqrt{x}< \sqrt{4,5}\Leftrightarrow0\le x< 4,5\)

\(h,dk:x\ge3;\sqrt{\left(x-1\right)^2}=3x-9\Leftrightarrow\left|x-1\right|=3x-9\Leftrightarrow x-1=3x-9\left(x\ge3\right)\Leftrightarrow x=4\left(tm\right)\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

a) ĐKXĐ: \(x\geq -3\)

Ta có: \(\sqrt{x+3}=1+\sqrt{2}\)

\(\Rightarrow x+3=(1+\sqrt{2})^2\)

\(\Leftrightarrow x+3=1+2+2\sqrt{2}=3+2\sqrt{2}\)

\(\Leftrightarrow x=2\sqrt{2}\) (thỏa mãn)

Vậy \(x=2\sqrt{2}\)

b) ĐK: \(x\geq 0\)

Có: \(\sqrt{10+\sqrt{5x}}=\sqrt{6}+2\)

\(\Rightarrow 10+\sqrt{5x}=(\sqrt{6}+2)^2=6+4+4\sqrt{6}\)

\(\Leftrightarrow \sqrt{5x}=4\sqrt{6}=\sqrt{96}\)

\(\Leftrightarrow x=\frac{96}{5}\) (thỏa mãn)

Vậy.....

c) ĐK: \(x\geq 4\)

Ta có: \(\sqrt{x^2-16}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{(x-4)(x+4)}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{x-4}(\sqrt{x+4}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-4}=0\\ \sqrt{x+4}=1\end{matrix}\right. \Leftrightarrow \left[\begin{matrix} x=4\\ x=-3\end{matrix}\right.\) (loại $x=-3$ vì $x\geq 4$)

Vậy \(x=4\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

d) ĐK: \(x\ge 0\)

Ta có: \(x-6\sqrt{x}+5=0\)

\(\Leftrightarrow (x-\sqrt{x})-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow \sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow (\sqrt{x}-5)(\sqrt{x}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x}-5=0\\ \sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=25\\ x=1\end{matrix}\right.\) (đều t/m)

e) ĐK: \(x\geq 3\)

\(\sqrt{x-3}\geq 7\)

\(\Leftrightarrow x-3\geq 49\)

\(\Leftrightarrow x\geq 52\). Kết hợp với ĐK suy ra \(x\geq 52\)

f) ĐK: \(x\geq -1\)

Ta có: \(\sqrt{x+1}\leq 3\)

\(\Leftrightarrow x+1\leq 9\)

\(\Leftrightarrow x\leq 8\)

Kết hợp với ĐK suy ra \(-1\leq x\leq 8\)

30 tháng 6 2021

a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{a}-\sqrt{b}\) (vì a > b > 0)

b) \(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}.\sqrt{x-3}}{\sqrt{\left(\sqrt{x}+\sqrt{3}\right)\left(\sqrt{x}-\sqrt{3}\right)}}=\frac{\sqrt{3\left(x-3\right)}}{\sqrt{x-3}}=\sqrt{3}\)

c) \(2y^2\sqrt{\frac{x^4}{4y^2}}=2y^2\cdot\frac{x^2}{-2y}=-x^2y\) (vì y < 0)

d) \(\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)(vì x > 0)

e) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\) (Vì x < 0, y > 0)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

16 tháng 7 2017

a) \(\sqrt{x+1}=x-1\) ( ĐKXĐ : x \(>0\) )

\(\Rightarrow x+1=\left(x-1\right)^2\)

\(x+1=x^2-2x+1\)

\(x^2-3x=0\)

\(x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) ( loại x = 0 do không thoả mãn ĐKXĐ )

Vậy nghiệm của pt là x = 3

b) \(x-\sqrt{2x+3}=0\) ( ĐKXĐ : x \(\ge-\dfrac{3}{2}\) , x \(\ne\) -1 )

\(x^2-2x-3=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\) ( Loại x = -1 do không thoả mãn ĐKXĐ )

Vậy nghiệm của pt là x = 3

c) \(\sqrt{x^2+2x+1}=5\)

\(\sqrt{\left(x+1\right)^2}=5\)

\(x+1=5\)

\(x=4\)

Vậy nghiệm của pt là x = 4

d) \(\sqrt{x-4\sqrt{x}+4}=3\) ( ĐKXĐ : x \(\ge\) 0 )

\(\sqrt{\left(\sqrt{x}-2\right)^2}=3\)

\(\sqrt{x}-2=3\)

\(\sqrt{x}=5\Rightarrow x=5\)

16 tháng 7 2017

c) \(\sqrt{x^2+2x+1}=5\)

<=> \(\sqrt{\left(x+1\right)^2}=5\)

<=> \(\left|x+1\right|=5\)

Ta xét 2 TH :

* Khi \(x+1\ge0\) <=> x \(\ge\) -1

Ta có PT :

x + 1 = 5

=> x = 4 (TM)

* Khi x + 1 < 0 <=> x < - 1

Ta có PT :

- x - 1 = 5

<=> -x = 5+1

=> x = -6 (TM)

Vậy Tập nghiệm của Pt là : S = { -6 ; 4 }

d) \(\sqrt{x-4\sqrt{x}+4}=3\)

<=> \(\sqrt{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}\) = 3

<=> \(\sqrt{\left(\sqrt{x}-2\right)^2}\) = 3

<=> \(\left|\sqrt{x}-2\right|\) = 3

Ta xét 2TH :

* Khi \(\sqrt{x}-2\ge0< =>x\ge4\)

Ta có PT :

\(\sqrt{x-2}=3\)

<=> \(\sqrt{x}=5\) => x = 25 (TM)

* Khi \(\sqrt{x}-2< 0\Leftrightarrow x< 4\)

Ta có PT :

\(-\sqrt{x-2}=3\)

vì để \(\sqrt{x-2}\) được xác định thì \(\sqrt{x-2}\ge0\) => x \(\ge\) 0

nên => TH 2 không thỏa mãn

Vậy S = {25}