Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}=3\Rightarrow x=9\)
\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
\(\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}=-2\Rightarrow x=\varnothing\)
a)\(\sqrt{x}=3\Rightarrow x=9\)
b)\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
c)\(\sqrt{x}=0\Rightarrow x=0\)
d)\(\sqrt{x}=-2\Rightarrow x=4\)
\(\sqrt{9}=3\)
\(\sqrt{25=3}\)
\(\sqrt{0}=0\)
\(-\sqrt{4}\)
a, \(\sqrt{x}\)=3 ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^{^{ }2}\)= \(^{3^2}\)
<=> x = 9
b, \(\sqrt{x}\)= \(\sqrt{5}\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=\left(\sqrt{5}\right)^2\)
<=> x = 5
c, \(\sqrt{x}=0\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=0^2\)
<=> x = 0
d, \(\sqrt{x}=-2\) ( đkxđ : \(x\ge0\))
vô nghiệm
Vậy k có giá trị nào của x ( tm đkxđ)
Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)
\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)
Vì \(\sqrt{3}\ne0\)
Nên : x - 5 = 0
Vậy x = 5.
b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)
\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)
\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)
Vì \(\sqrt{2}\ne0\)
Nên x - 5 = 0
Suy ra : x = 5
chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương
\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)
\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)
\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)
\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)
CÂU CUỐI chưa làm đc
ý cuối cùng này :
\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có
\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)
\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)
\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)
\(a,\sqrt{x^4}=7\Leftrightarrow x^2=7\Leftrightarrow x=\pm\sqrt{7}\)
\(Dk:x\ge\frac{2}{3};\sqrt{3x-2}=4\Leftrightarrow3x-2=16\Leftrightarrow3x=18\Leftrightarrow x=6\left(tm\right)\)
\(dk:x\ge\frac{3}{2};\sqrt{2x-3}=\sqrt{x-1}\Leftrightarrow2x-3=x-1\Leftrightarrow x=2\left(tm\right)\)
\(dk:x\ge0;x-10\sqrt{x}+25=0\Leftrightarrow\left(\sqrt{x}-5\right)^2=0\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)
\(\sqrt{2x}< 3\Leftrightarrow\sqrt{2}.\sqrt{x}< 3\Leftrightarrow0\le\sqrt{x}< \sqrt{4,5}\Leftrightarrow0\le x< 4,5\)
\(h,dk:x\ge3;\sqrt{\left(x-1\right)^2}=3x-9\Leftrightarrow\left|x-1\right|=3x-9\Leftrightarrow x-1=3x-9\left(x\ge3\right)\Leftrightarrow x=4\left(tm\right)\)
a) ĐKXĐ: \(x\geq -3\)
Ta có: \(\sqrt{x+3}=1+\sqrt{2}\)
\(\Rightarrow x+3=(1+\sqrt{2})^2\)
\(\Leftrightarrow x+3=1+2+2\sqrt{2}=3+2\sqrt{2}\)
\(\Leftrightarrow x=2\sqrt{2}\) (thỏa mãn)
Vậy \(x=2\sqrt{2}\)
b) ĐK: \(x\geq 0\)
Có: \(\sqrt{10+\sqrt{5x}}=\sqrt{6}+2\)
\(\Rightarrow 10+\sqrt{5x}=(\sqrt{6}+2)^2=6+4+4\sqrt{6}\)
\(\Leftrightarrow \sqrt{5x}=4\sqrt{6}=\sqrt{96}\)
\(\Leftrightarrow x=\frac{96}{5}\) (thỏa mãn)
Vậy.....
c) ĐK: \(x\geq 4\)
Ta có: \(\sqrt{x^2-16}-\sqrt{x-4}=0\)
\(\Leftrightarrow \sqrt{(x-4)(x+4)}-\sqrt{x-4}=0\)
\(\Leftrightarrow \sqrt{x-4}(\sqrt{x+4}-1)=0\)
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-4}=0\\ \sqrt{x+4}=1\end{matrix}\right. \Leftrightarrow \left[\begin{matrix} x=4\\ x=-3\end{matrix}\right.\) (loại $x=-3$ vì $x\geq 4$)
Vậy \(x=4\)
d) ĐK: \(x\ge 0\)
Ta có: \(x-6\sqrt{x}+5=0\)
\(\Leftrightarrow (x-\sqrt{x})-5(\sqrt{x}-1)=0\)
\(\Leftrightarrow \sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0\)
\(\Leftrightarrow (\sqrt{x}-5)(\sqrt{x}-1)=0\)
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x}-5=0\\ \sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=25\\ x=1\end{matrix}\right.\) (đều t/m)
e) ĐK: \(x\geq 3\)
\(\sqrt{x-3}\geq 7\)
\(\Leftrightarrow x-3\geq 49\)
\(\Leftrightarrow x\geq 52\). Kết hợp với ĐK suy ra \(x\geq 52\)
f) ĐK: \(x\geq -1\)
Ta có: \(\sqrt{x+1}\leq 3\)
\(\Leftrightarrow x+1\leq 9\)
\(\Leftrightarrow x\leq 8\)
Kết hợp với ĐK suy ra \(-1\leq x\leq 8\)
a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{a}-\sqrt{b}\) (vì a > b > 0)
b) \(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}.\sqrt{x-3}}{\sqrt{\left(\sqrt{x}+\sqrt{3}\right)\left(\sqrt{x}-\sqrt{3}\right)}}=\frac{\sqrt{3\left(x-3\right)}}{\sqrt{x-3}}=\sqrt{3}\)
c) \(2y^2\sqrt{\frac{x^4}{4y^2}}=2y^2\cdot\frac{x^2}{-2y}=-x^2y\) (vì y < 0)
d) \(\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)(vì x > 0)
e) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\) (Vì x < 0, y > 0)
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
a) \(\sqrt{x+1}=x-1\) ( ĐKXĐ : x \(>0\) )
\(\Rightarrow x+1=\left(x-1\right)^2\)
\(x+1=x^2-2x+1\)
\(x^2-3x=0\)
\(x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) ( loại x = 0 do không thoả mãn ĐKXĐ )
Vậy nghiệm của pt là x = 3
b) \(x-\sqrt{2x+3}=0\) ( ĐKXĐ : x \(\ge-\dfrac{3}{2}\) , x \(\ne\) -1 )
\(x^2-2x-3=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\) ( Loại x = -1 do không thoả mãn ĐKXĐ )
Vậy nghiệm của pt là x = 3
c) \(\sqrt{x^2+2x+1}=5\)
\(\sqrt{\left(x+1\right)^2}=5\)
\(x+1=5\)
\(x=4\)
Vậy nghiệm của pt là x = 4
d) \(\sqrt{x-4\sqrt{x}+4}=3\) ( ĐKXĐ : x \(\ge\) 0 )
\(\sqrt{\left(\sqrt{x}-2\right)^2}=3\)
\(\sqrt{x}-2=3\)
\(\sqrt{x}=5\Rightarrow x=5\)
c) \(\sqrt{x^2+2x+1}=5\)
<=> \(\sqrt{\left(x+1\right)^2}=5\)
<=> \(\left|x+1\right|=5\)
Ta xét 2 TH :
* Khi \(x+1\ge0\) <=> x \(\ge\) -1
Ta có PT :
x + 1 = 5
=> x = 4 (TM)
* Khi x + 1 < 0 <=> x < - 1
Ta có PT :
- x - 1 = 5
<=> -x = 5+1
=> x = -6 (TM)
Vậy Tập nghiệm của Pt là : S = { -6 ; 4 }
d) \(\sqrt{x-4\sqrt{x}+4}=3\)
<=> \(\sqrt{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}\) = 3
<=> \(\sqrt{\left(\sqrt{x}-2\right)^2}\) = 3
<=> \(\left|\sqrt{x}-2\right|\) = 3
Ta xét 2TH :
* Khi \(\sqrt{x}-2\ge0< =>x\ge4\)
Ta có PT :
\(\sqrt{x-2}=3\)
<=> \(\sqrt{x}=5\) => x = 25 (TM)
* Khi \(\sqrt{x}-2< 0\Leftrightarrow x< 4\)
Ta có PT :
\(-\sqrt{x-2}=3\)
vì để \(\sqrt{x-2}\) được xác định thì \(\sqrt{x-2}\ge0\) => x \(\ge\) 0
nên => TH 2 không thỏa mãn
Vậy S = {25}
a)
\(\sqrt{x}=4\Rightarrow x=4^2=16\)
c) \(x\in\varnothing\)
e) \(\sqrt{x}=6,25\Rightarrow x=\left(6,25\right)^2=39,0625\)
b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)
d) \(\sqrt{x}=0\Rightarrow x=0\)
Cách đánh đề độc lạ ghê:v
a: =>x=16
b: =>x=7
c: =>x thuộc rỗng
d: =>x=0
e: =>x=(25/4)^2=625/16