Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x}>2\Leftrightarrow\sqrt{x^2}>2^2\Leftrightarrow x>4\)
\(\sqrt{x}< 1\Leftrightarrow\sqrt{x^2}< 1^2\Leftrightarrow x< 1\)
a) \(\sqrt{x}>1\Leftrightarrow x>1\)
b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)
Vì x không âm nên x={0;1;2;3;4;5;6;7;8}
a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)
b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)
a/\(\sqrt{x}=7\)
\(\Leftrightarrow x=49\)
b/\(\Leftrightarrow x< 4\)(do x>0)
\(\Rightarrow x\varepsilon\left\{0;1;2;3\right\}\)
c/\(2x< 16\)
\(\Leftrightarrow x< 8\)
\(\Leftrightarrow x\varepsilon\left\{1;2;3;4;5;6;7\right\}\)
a) \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)
\(\Leftrightarrow x=7^2\Leftrightarrow x=49\)
b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow x< 2\)
c) \(\sqrt{2x}< 4\)
Vì \(4=\sqrt{16}\text{ nên }\sqrt{2x}< 4\text{ có nghĩa là }\sqrt{2x}< 16\)
\(\Leftrightarrow2x< 16\)
\(\Leftrightarrow x< 8\left(x\ge0\right)\)
Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)
a) = 225
b) 49
c) = 1
d) 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7
k nha
a) \(\sqrt{x}=15\)
=> x = 152
=> x = 225
b) \(2\sqrt{x}=14\)
<=> \(\sqrt{x}=7\)
=> x = 72
=> x = 49
c) \(\sqrt{x}< \sqrt{2}\)
<=> x < 2
mà \(x\ge0\)
=> x= {0;1}
d) \(\sqrt{2x}< 4\)
=> 2x < 16
<=> x < 8
mà \(x\ge0\)
=> x = {0;1;2;3;4;5;6;7}
ok mk nhé!!!!!! 53654645756876969251353253434645655435436464556756252345345634
a) ĐKXĐ : \(x\ge-3\)
\(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
Kết hợp điều kiện \(\Rightarrow x\ge22\)
Vậy..................................
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
a, \(\sqrt{3x}< 6\Leftrightarrow3x< 36\Leftrightarrow x< 12\)
\(\Rightarrow0\le x< 12\)
b, \(\sqrt{2x}>1\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)
thằng này lm j đây?